scholarly journals Simplification of the Model of Piezoelectric Actuator Control Based on Preliminary Measurements

Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 90
Author(s):  
Roman Baraniuk ◽  
Welf-Guntram Drossel

This article describes a mathematical model simplification, designed to automate the iterative process of non-circular drilling with a precise shape. This model has been optimized for systems that already have experimental data for processing and analysis. Additionally, using optimization steps, the model can be used for systems with insufficient experimental data with a self-learning opportunity. The high-end model can be used for drilling systems represented as a “black box” without knowing of any parameters of the system. The simplification and assumptions algorithm is based on controlling the input signal for non-circular drilling in the cylinders of internal combustion engines using a drilling machine controlled by 8 piezoelectric actuators. The total dynamics of this system is unknown and consists of the dynamics of electrical converters, piezo-kinematics, and mechanics. Simplification is carried out starting from the methods of diacoptics for a complex system with different process-flow rates, and ending with one or the sum of linear models valid for a given system of assumptions.

2017 ◽  
Vol 6 (4) ◽  
pp. 40-49
Author(s):  
В. Марков ◽  
V. Markov ◽  
Л. Мягков ◽  
L. Myagkov ◽  
Н. Маластовский ◽  
...  

Development and updating of systems for internal-combustion engines’ exhaust gases treatment under tightened limits for toxics emissions continues to be an urgent issue. The usage of computational fluid dynamics methods in the design of such systems presents a significant practical value. In this work has been considered and realized a calculation procedure for evaporation and thermal decomposition of urea in SCR-systems based on ANSYS Fluent. The calculated results have been compared with existing experimental data. It has been concluded that the developed calculation procedure can be used for efficiency estimation of SCRsystems for internal-combustion engines’ exhaust gases.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Rudy Sutanto ◽  
Kusuma Wardani ◽  
Arif Mulyanto ◽  
Nurchayati Nurchayati ◽  
Pandri Pandiatmi ◽  
...  

The long term purpose of this research is to obtain the high quality renewable biogas that can be used as fuel for internal combustion engines to drive an electricity generator as energy diversification efforts in the area of small sustainable islands. The specific target expected to be achieved is a method/technique for absorbing impurities contained in biogas, especially CO2 component. The study was conducted to reduce the level of CO2 in biogas using NaOH solution. The mass flow rates of biogas employed were 2, 4, 6, 8 and 10 l/min. The biogas was then tested using an engine to see the effect CO2 on the engine performance at several rotations, i.e. 1500, 2500, 3500, and 4500 rpm. The results show that the torque increases by 21.3% for biogas B2 compared to the unpurified biogas. For biogas B4, the torque increases by 19.1%. While for biogas B6, B8, and B10, the torques increase by 14.9%, 12.8%, and 8.5% respectively. For biogas B2, the SFCE decreases by 33.4%, for biogas B4, the SFCE declines of about 22.7%, while for biogas B6, the SFCE declines by 17.9%. The SFCSs also decline by 13.9% and 8.5% for biogas B8 and B10.


2021 ◽  
pp. 25-30
Author(s):  

The starting of the internal combustion engine in conditions of low and critically low ambient temperatures is considered. It is shown that a successful start of an internal combustion engine can be ensured by creating a fuel-air mixture with a high temperature outside the engine compartment. The design of a device for creating such mixture and research experimental data are presented. A new scheme of the starting device is proposed, which can be integrated into various types of internal combustion engines. Keywords: internal combustion engine, starting, low temperature, operation. [email protected]


Author(s):  
Rossella Rotondi ◽  
Cinzio Arrighetti

Numerical investigation of the spray-wall interaction was carried out. Wall interaction models that predict the post-impingement state of drops hitting a wall, under internal combustion engines conditions, are still missing. In this paper different existing models were implemented in a modified version of the KIVA3V code. Simulations concerning high pressure sprays in a chamber at different ambient pressures were made. Numerical radial penetrations and spray pattern were compared to experimental data.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4535
Author(s):  
Călin Iclodean ◽  
Nicolae Cordoș ◽  
Adrian Todoruț

The public-transport sector represents, on a global level, a major ecological and economic concern. Improving air quality and reducing greenhouse gas (GHG) production in the urban environment can be achieved by using electric buses instead of those operating with internal combustion engines (ICE). In this paper, the energy consumption for a fleet of electric buses Solaris Urbino 12e type is analyzed, based on the experimental data taken from a number of 22 buses, which operate on a number of eight urban lines, on a route of approximately 100 km from the city of Cluj-Napoca, Romania; consumption was monitored for 12 consecutive months (July 2018–June 2019). The energy efficiency of the model for the studied electric buses depends largely on the management of the energy stored on the electric bus battery system, in relation to the characteristics of the route traveled, respectively to the atmospheric conditions during the monitored period. Based on the collected experimental data and on the technical characteristics of the electric buses, the influence of the atmospheric conditions on their energy balance was highlighted, considering the interdependence relations between the considered atmospheric conditions.


Sign in / Sign up

Export Citation Format

Share Document