scholarly journals Linking Sap Flow and Trunk Diameter Measurements to Assess Water Dynamics of Touriga-Nacional Grapevines Trained in Cordon and Guyot Systems

Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 315
Author(s):  
Aureliano C. Malheiro ◽  
Mafalda Pires ◽  
Nuno Conceição ◽  
Ana M. Claro ◽  
Lia-Tânia Dinis ◽  
...  

The present research aimed to evaluate the water dynamics of grapevines trained in Cordon and Guyot systems by coupling sap flow and trunk diameter measurements under Mediterranean climate conditions. The study was conducted in a vineyard with Touriga-Nacional located at the Douro Valley, Portugal, during 2017. The results showed daily trunk diameter fluctuations (TDFs), with the contraction, recovery and increment phases and higher sap flow (SF) rates at earlier stages. Under harsh pedoclimatic conditions, SF was reduced and TDF flattened. Rehydration and stomatal mechanisms were mostly associated with these responses. Guyot vines showed higher changes in TDF for the same SF values, whereas the TDFs of Cordon vines remained practically unchanged over maturation. Guyot vines generally showed increased values of cumulative increment and maximum daily trunk shrinkage. Although Guyot vines had a similar leaf area index (LAI), they showed higher SF/LAI ratios than Cordon vines. These results highlight the effect of the shorter length of the hydraulic pathways of the Guyot training system, in contrast to the higher trunk and the permanent horizontal branch (cordon) of the Cordon training system, indicating good adaptation to local pedoclimatic conditions. The study pointed to the complementary use of both techniques in the evaluation of grapevine water dynamics.

2021 ◽  
Author(s):  
Aureliano C. Malheiro ◽  
Lia-Tânia Dinis ◽  
Nuno Conceição ◽  
José Moutinho-Pereira

<p>The Mediterranean wine regions are characterized by a marked intra (and inter) annual climate variability, where high water deficits in the atmosphere and soil can develop, particularly during the summer. In addition, the climate change scenarios point to an intensification of these environmental conditions in the near future. Thus, the combination of survival strategies, which include the ability to reduce water losses, increase absorption or control dehydration, becomes an important tool for crop water management. Adaptation measures involving cultural practices must also be adopted to ensure the sustainability of the wine sector. One of the main adaptation viticultural practice is the selection of the training system. In this context, mature vines trained to two different systems in the Douro Demarcated Region (NE Portugal) were selected and several measurements (e.g. weather variables, soil moisture, leaf water potential, leaf area index, sap flow and trunk diameter fluctuations) were performed under variable soil water availability. The results highlight the key role of plant survival strategies, such as stomatal control and adjustment of the total leaf area, in order to reduce transpiration, as well as a nocturnal rehydration. Furthermore, and in terms of water dynamics, the results point to the effect of the shorter length of the hydraulic pathways of the Guyot-trained vines, in contrast to the higher trunk and the permanent horizontal cordon of the vines trained to spur pruned cordon. The research findings support the selection of the Guyot as a training system that is better adapted to the projected climate change in Mediterranean wine-producing regions.</p>


2020 ◽  
Author(s):  
David Chaparro ◽  
Thomas Jagdhuber ◽  
Dara Entekhabi ◽  
María Piles ◽  
Anke Fluhrer ◽  
...  

<p>Changing climate patterns have increased hydrological extremes in many regions [1]. This impacts water and carbon cycles, potentially modifying vegetation processes and thus terrestrial carbon uptake. It is therefore crucial to understand the relationship between the main water pools linked to vegetation (i.e., soil moisture, plant water storage, and atmospheric water deficit), and how vegetation responds to changes of these pools. Hence, the goal of this research is to understand the water pools and fluxes in the soil-plant-atmosphere continuum (SPAC) and their relationship with vegetation responses.</p><p>Our study spans from April 2015 to March 2019 and is structured in two parts:</p><p>Firstly, relative water content (RWC) is estimated using a multi-sensor approach to monitor water storage in plants. This is at the core of our research approach towards water pool monitoring within SPAC. Here, we will present a RWC dataset derived from gravimetric moisture content (<em>mg</em>) estimates using the method first proposed in [2], and further validated in [3]. This allows retrieving RWC and <em>mg</em> independently from biomass influences. Here, we apply this method using a sensor synergy including (i) vegetation optical depth from SMAP L-band radiometer (L-VOD), (ii) vegetation height (VH) from ICESat-2 Lidar and (iii) vegetation volume fraction (d) from AQUARIUS L-band radar. RWC status and temporal dynamics will be discussed.</p><p>Secondly, water dynamics in the SPAC and their impact on leaf changes are analyzed. We will present a global, time-lag correlation analysis among: (i) the developed RWC maps, (ii) surface soil moisture from SMAP (SM), (iii) vapor pressure deficit (VPD; from MERRA reanalysis [4]), and (iv) leaf area index (LAI; from MODIS [5]). Resulting time-lag and correlation maps, as well as analyses of LAI dynamics as a function of SPAC, will be presented at the conference.</p><p> </p><p>References</p><p>[1] IPCC. (2013). Annex I: Atlas of global and regional climate projections. In: van Oldenborgh, et al. (Eds.) Climate Change 2013: The Physical Science Basis (pp. 1311-1393). Cambridge University Press.</p><p>[2] Fink, A., et al. (2018). Estimating Gravimetric Moisture of Vegetation Using an Attenuation-Based Multi-Sensor Approach. In IGARSS 2018 (pp. 353-356). IEEE.</p><p>[3] Meyer, T., et al. Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth, Remote Sens. 2019, 11(20), 2353</p><p>[4] NASA (2019). Modern-Era Retrospective analysis for Research and Applications, Version 2. Accessed 2020-01-14 from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.</p><p>[5] Myneni, R., et al. (2015). MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. Accessed 2020-01-14 from https://doi.org/10.5067/MODIS/MOD15A2H.006.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yin Wu ◽  
Genwei Guo ◽  
Guiyun Tian ◽  
Wenbo Liu

Internet of Things (IoT) is a very promising technology in forest engineering, especially for the environment and plant growth monitoring. LoRa Wide Area Network (LoRaWAN) is a prevailing choice for the Forestry IoT owing to its low-power and long-range ability. Real-world deployment and network optimization require accurate path-loss modeling, so the LoRaWAN radio channel in the forest is needed to be intensively studied. However, most of the subsistent propagation models do not involve specific forestry environmental parameters. In this paper, two parameters related with the trees are considered: the leaf area index and the tree trunk diameter. Due to the time-changing characteristics of these two items (from spring to winter), an empirical model has been developed through extensive measurement campaigns: Firstly, the channel measurement platform is designed based on a real scene of mixed forest. Secondly, the fading characteristics of the channel transmission for LoRa nodes are tested, and the corresponding model is presented and evaluated. Lastly, an energy harvesting LoRaWAN is deployed and operated in a sampled forest region of Eastern China for environment monitoring based on our propagation model. The results show that 433 MHz LoRa path loss in the mingled forest could be precisely predicted by our proposed model. Moreover, network coverage and energy consumption optimization of the LoRa nodes could be performed, which enables the perpetual development of reliable forestry evolution monitoring system.


Trees ◽  
2005 ◽  
Vol 20 (1) ◽  
pp. 1-8 ◽  
Author(s):  
M. Fernanda Ortuño ◽  
Yelitza García-Orellana ◽  
Wenceslao Conejero ◽  
M. Carmen Ruiz-Sánchez ◽  
Juan José Alarcón ◽  
...  

2005 ◽  
Vol 54 (2) ◽  
pp. 155-162 ◽  
Author(s):  
M.F. Ortuño ◽  
J.J. Alarcón ◽  
E. Nicolás ◽  
A. Torrecillas

Sign in / Sign up

Export Citation Format

Share Document