scholarly journals Wild Relatives of Wheat Respond Well to Water Deficit Stress: A Comparative Study of Antioxidant Enzyme Activities and Their Encoding Gene Expression

Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 415
Author(s):  
Alireza Pour-Aboughadareh ◽  
Mansoor Omidi ◽  
Mohammad Reza Naghavi ◽  
Alireza Etminan ◽  
Ali Ashraf Mehrabi ◽  
...  

Previous studies have revealed that some wild wheat accessions respond well to water deficit treatments and have a good potential in terms of photosynthetic parameters, root system architecture, and several physiological properties. However, the biochemical responses and molecular mechanisms of antioxidant-encoding genes remain to be elucidated. Herein, we investigated the most tolerant accessions from A. crassa, Ae. tauschii, and Ae. cylindrica previously identified from a core collection in previous studies, along with a control variety of bread wheat (T. aestivum cv. Sirvan) through measuring the shoot fresh and dry biomasses; the activities of antioxidant enzymes (including ascorbate peroxidase (APX), catalase (CAT), guaiacol peroxidase (GPX), and peroxidase (POD)); and the relative expression of CAT, superoxide dismutase (MnSOD), and GPX and APX genes under control and water deficit conditions. Water deficit stress caused a significant decrease in the shoot biomasses but resulted in an increase in the activity of all antioxidant enzymes and relative expression of antioxidant enzyme-encoding genes. Principal component analysis showed a strong association between the shoot dry biomass and the activity of CAT, POD, and APX, as well as MnSOD gene expression. Thus, these traits can be used as biomarkers to screen the tolerant plant material in the early growth stage. Taken together, our findings exposed the fact that Ae. tauschii and Ae. crassa respond better to water deficit stress than Ae. cylindrica and a control variety. Furthermore, these accessions can be subjected to further molecular investigation.

HortScience ◽  
2015 ◽  
Vol 50 (11) ◽  
pp. 1702-1708 ◽  
Author(s):  
Sheng Xu ◽  
Mingmin Jiang ◽  
Jiangyan Fu ◽  
Lijian Liang ◽  
Bing Xia ◽  
...  

From a field experiment, the changes in morphophysiological characters and antioxidant enzyme activities were studied in two Lycoris species (Lycoris radiata and Lycoris aurea) subjected to 16 days of water deficit stress. With the increase of water deficit stress processing time, leaf relative water content (RWC), membrane stability index (MSI), net photosynthesis (Pn), stomatal conductance (gS), transpiration rate (E), and chlorophyll (Chl) content decreased in both studied species. The water use efficiency (WUE) showed an opposite tendency between the two species under water deficit stress, where WUE of L. aurea decreased moderately and WUE of L. aurea increased somehow. Intercellular CO2 concentration (Ci) in L. aurea and L. radiata decreased in respond to water deficit stress at early stages of stress treatment, then increased throughout the rest of the stress period, and reached levels higher than those in well-watered plants at the end of the treatment. In addition, there was a significant increment in soluble sugar content and proline accumulation under water deficit stress in both species, and L. radiata showed a much more accumulation. The activity of superoxide dismutase (SOD), guaiacol peroxidase (POD), and ascorbate peroxidase (APX) increased in both plants subjected to water deficit stress while declined as the stress time increased. In L. aurea, catalase (CAT) showed a sustained increment, but it responded later and after a transient increase declined again in L. radiata under water deficit stress. In conclusion, L. radiata was more tolerant to water deficit stress than L. aurea as evidenced by its relatively higher water status, higher levels of proline, soluble sugar and pigments, and stronger photoprotection. Moreover, relatively higher antioxidant enzyme activities and lower levels of thiobarbituric acid reactive substances (TBARS) in L. radiata were also associated with its better protection against water deficit stress-induced oxidative damage.


2011 ◽  
Vol 136 (4) ◽  
pp. 247-255 ◽  
Author(s):  
Lixin Xu ◽  
Liebao Han ◽  
Bingru Huang

The objectives of this study were to examine antioxidant enzyme responses to drought stress and rewatering at both enzymatic activity and transcript levels and to determine the major antioxidant processes associated with drought tolerance and post-drought recovery for a perennial grass species, kentucky bluegrass (Poa pratensis). Antioxidant enzyme responses to drought and rewatering in a drought-tolerant cultivar (Midnight) and a drought-sensitive cultivar (Brilliant) were compared in a growth chamber. Plants were exposed to 22 days of drought stress for ‘Midnight’ and 18 days for ‘Brilliant’ before rewatering to allow the leaf relative water content (RWC) of both cultivars to drop to the same level. ‘Midnight’ exhibited higher photochemical efficiency (Fv/Fm) and lower electrolyte leakage compared with ‘Brilliant’ when at the same water deficit status (26% to 28% RWC). After 6 days of rewatering, all physiological parameters returned to the control level for ‘Midnight’, but only Fv/Fm fully recovered for ‘Brilliant’. The transcript level of cytosolic copper/zinc superoxide dismutase (cyt Cu/Zn SOD) and ascorbate peroxidase (APX) was significantly higher in ‘Midnight’ than in ‘Brilliant’ when exposed to the same level of water deficit (26% to 28% RWC), suggesting that SOD and APX could be involved in scavenging oxidative stress-induced reactive oxygen species in kentucky bluegrass through changes in the level of gene expression. Significantly higher activities of APX, monodehydroascorbate reductase, glutathione reductase, and dehydroascorbate reductase as well as lower lipid peroxidation levels were observed in ‘Midnight’ versus ‘Brilliant’ when exposed to drought. However, the activities of SOD, catalase (CAT), and guaiacol peroxidase (POD) did not differ between the two cultivars. After 6 days of rewatering, ‘Midnight’ displayed significantly higher activity levels of CAT, POD, and APX compared with ‘Brilliant’. The enzyme activity results indicate that enzymes involved in the ascorbate–glutathine cycle may play important roles in antioxidant protection to drought damage, whereas CAT, POD, and APX could be associated with better post-drought recovery in kentucky bluegrass.


2015 ◽  
Vol 74 (1) ◽  
pp. 123-142 ◽  
Author(s):  
Koushik Chakraborty ◽  
Amrit L. Singh ◽  
Kuldeep A. Kalariya ◽  
Nisha Goswami ◽  
Pratap V. Zala

AbstractFrom a field experiment, the changes in oxidative stress and antioxidant enzyme activities were studied in six Spanish peanut cultivars subjected to 25−30 days of water deficit stress at two different stages: pegging and pod development stages. Imposition of water deficit stress significantly reduced relative water content, membrane stability and total carotenoid content in all the cultivars, whereas total chlorophyll content increased at pegging stage but decreased at pod developmental stage. Chlorophyll a/b ratio increased under water deficit stress in most of the cultivars suggesting a greater damage to chlorophyll b rather than an increase in chlorophyll a content. Oxidative stress measured in terms of H2O2, superoxide radical content and lipid peroxidation increased under water deficit stress, especially in susceptible cultivars such as DRG 1, AK 159 and ICGV 86031. Relationship among different physiological parameters showed that the level of oxidative stress, in terms of production of reactive oxygen species, was negatively correlated with activities of different antioxidant enzymes such as superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase. In conclusion, the study shows that water deficit stress at pod development stage proved to be more detrimental than at pegging stage. The higher activities of antioxidant enzymes in the tolerant cultivars like ICGS 44 and TAG 24 were responsible for protection of oxidative damage and thus provide better tolerance to water deficit stress.


Author(s):  
Shamim Akram ◽  
Mohammad Golam Kibria ◽  
Yoshiyuki Murata ◽  
Md. Anamul Hoque

Improving drought stress tolerance in maize is essential to increase its production and yield worldwide.  Thus, the present study was conducted to investigate the improvement of drought tolerance in maize (Zea mays L.) by exogenous application of proline (25 and 50mM) on two maize varieties. Maize plants were subjected to drought stress at various phases of plant growth under pot culture conditions and proline was applied as foliar spray. Water deficit stress caused a significant decrease (by approximately 25%) in growth and yield of both maize varieties by decreasing plant height, cob length, dry root weight, grains per cob and 100-grain weight. Water deficit stress also decreased chlorophyll and intercellular proline contents, and antioxidant enzyme activities viz. catalase (CAT), guaiacol peroxidase (POX) and ascorbate peroxidase (APX). Exogenous application of proline (50 mM) was found to be more effective in increasing growth and yield of both varieties. These increases were positively associated with increased levels (by at least 15%) of chlorophyll and intracellular proline, and enhanced activities of CAT, POX and APX enzymes in both varieties. Interaction effects of exogenous proline and water deficit stress were significant in aspects of higher growth and yields and enhanced levels of chlorophyll, intracellular proline and antioxidant enzyme activities. Therefore, it is concluded that foliar application of proline improves drought tolerance by modulating chlorophyll and intracellular proline contents, and antioxidant enzyme activities.


2021 ◽  
Author(s):  
Hanifeh Seyed Hajizadeh ◽  
Sahar Azizi ◽  
Farzad Rasouli ◽  
Volkan Okatan

Abstract Drought is a major abiotic stress that prevents plant growth and efficiency. Silicon increases drought tolerance by regulating the biosynthesis and acumulation of some osmolits.This study was conducted to modulate dought stress induced by Polyethylene glycol (PEG) in two genotypes of damasks by nano silicon dioxide (nSiO2). The experiment included three levels of nSiO2 (0, 50 and 100 mg L-1) and PEG (0, 25, 50, 75 and 100 g L-1) added to culture medium. Drought stress decreased protein content while Maragheh genotype under normal conditios and treating with 100 mg L-1 nSiO2 had the highest protein content. Under severe drought stress Maragheh genotype had stronger membrane stability index (MSI) than Kashan genotype and explants treated with 100 mg L-1 nSiO2 had the highest MSI in control plants. Contrary to the negative effects of drought, plants treated with 100 mg L−1 nSiO2 maintained more of their photosynthetic parameters in comparison with other treatments and showed higher amount of protein and proline in Maragheh rather than kashan genotype. Drought stress reduced the values of Fm, Fv/Fm, and Fv. In general, under drought stress, treatment with nSiO2 increased the mentioned characteristics before. It also improved water deficit tolerance through enhancing in the activity of antioxidant enzymes such as catalase, peroxidase, guaiacol peroxidase and superoxide dismutase while the amount of lipid peroxidation and hydrogen peroxide decreased. The results showed that Maragheh genotype may be more stronger in counter with water deficit by improving in water balance, antioxidant enzyme activities, and membrane stability.


2020 ◽  
Vol 48 (4) ◽  
pp. 1993-2005
Author(s):  
Chun-Yan LIU ◽  
Yu-Juan WANG ◽  
Qiang-Sheng WU ◽  
Tian-Yuan YANG ◽  
Kamil KUČA

A pot experiment was carried out to evaluate the response of leaf antioxidant enzyme systems to inoculation with arbuscular mycorrhizal fungus (AMF) Clariodeoglomus etunicatum in tea (Camellia sinensis cv. ‘Fuding Dabaicha’) seedlings under drought stress (DS). Root AMF colonization was significantly decreased after an eight-week soil drought treatment. Plant growth performance (plant height, stem diameter, leaf number and root biomass), leaf relative water content, and leaf water potential were notably decreased under DS conditions, whereas these variables exhibited significantly higher responses in mycorrhizal seedlings than in non-mycorrhizal seedlings. The DS treatment markedly increased leaf superoxide anion concentration but did not affect malondialdehyde content, whereas both were reasonably decreased by AMF colonization regardless of water status. The seedlings colonized by AMF showed substantially higher antioxidant enzyme activities including superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase, and ascorbate peroxidase than the non-AMF colonized seedlings under both well-watered and DS conditions. DS markedly upregulated the relative expression of CsSOD in both AMF and non-AMF seedlings and the relative expression of CsCAT in AMF seedlings. Meanwhile, AMF-colonized seedlings represent markedly higher relative expressions of CsSOD and CsCAT than non-AMF seedlings, irrespective of water status. It concludes that mycorrhizal tea plants had higher antioxidant enzyme activity and corresponding gene expression under DS, indicating a stronger ability to alleviate the oxidative damage of drought.


1989 ◽  
Vol 66 (2) ◽  
pp. 1003-1007 ◽  
Author(s):  
C. W. White ◽  
P. Ghezzi ◽  
S. McMahon ◽  
C. A. Dinarello ◽  
J. E. Repine

Pretreatment with the combination of tumor necrosis factor/cachectin (TNF/C) and interleukin 1 (IL-1) increased glucose-6-phosphate dehydrogenase (G6PDH), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and superoxide dismutase (SOD) activities in lungs of rats continuously exposed to hyperoxia for 72 h, a time when all untreated rats had already died. Pretreatment with TNF/C and IL-1 also increased, albeit slightly, lung G6PDH and GR activities of rats exposed to hyperoxia for 4 or 16 h. By comparison, no differences occurred in lung antioxidant enzyme activities of TNF/C and IL-1- or saline-pretreated rats exposed to hyperoxia for 36 or 52 h; the latter is a time just before untreated rats began to succumb during exposure to hyperoxia. The results raise the possibility that TNF/C and IL-1 treatment can increase lung antioxidant enzyme activities and that increased lung antioxidant enzymes may contribute to the increased survival of TNF/C and IL-1-pretreated rats in hyperoxia for greater than 72 h.


Sign in / Sign up

Export Citation Format

Share Document