scholarly journals New Case of False-Star-Grass (Chloris distichophylla) Population Evolving Glyphosate Resistance

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 377 ◽  
Author(s):  
José G. Vázquez-García ◽  
Sajedeh Golmohammadzadeh ◽  
Candelario Palma-Bautista ◽  
Antonia M. Rojano-Delgado ◽  
José A. Domínguez-Valenzuela ◽  
...  

Chloris distichophylla, suspected of glyphosate resistance (GR), was collected from areas of soybean cultivation in Rio Grande do Sul, Brazil. A comparison was made with a susceptible population (GS) to evaluate the resistance level, mechanisms involved, and control alternatives. Glyphosate doses required to reduce the dry weight (GR50) or cause a mortality rate of 50% (LD50) were around 5.1–3 times greater in the GR population than in the GS population. The shikimic acid accumulation was around 6.2-fold greater in GS plants than in GR plants. No metabolized glyphosate was found in either GR or GS plants. Both populations did not differ in the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) basal activity or in vitro inhibition of EPSPS activity by glyphosate (I50). The maximum glyphosate absorption was observed at 96 hours after treatment (HAT), which was twofold higher in the GS plants than in the GR plants. This confirms the first case of glyphosate resistance in C. distichophylla. In addition, at 96 HAT, the GS plants translocated more 14C-glyphosate than the GR ones. The best options for the chemical control of both C. distichophylla populations were clethodim, quizalofop, paraquat, glufosinate, tembotrione, diuron, and atrazine. The first case of glyphosate resistance in C. distichophylla was due to impaired uptake and translocation. Chemical control using multiple herbicides with different modes of action (MOA) could be a tool used for integrated weed management (IWM) programs.

Agriculture ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 304
Author(s):  
Ricardo Alcántara-de la Cruz ◽  
Gabriel da Silva Amaral ◽  
Guilherme Moraes de Oliveira ◽  
Luiz Renato Rufino ◽  
Fernando Alves de Azevedo ◽  
...  

Glyphosate is the main tool for weed management in Brazilian citrus orchards, where weeds, such as Conyza bonariensis and Digitaria insularis, have been found with resistance to this herbicide. Field prospections have allowed the identification of a possible new case of glyphosate resistance. In this work, the susceptibility levels to glyphosate on three Amaranthus viridis L. populations, with suspected resistance (R1, R2, and R-IAC), collected in citrus orchards from the São Paulo State, Brazil, as well as their accumulation rates of shikimic acid, were determined. The fresh weight of the susceptible population (S) was reduced by 50% (GR50) with ~30 g ea ha−1 glyphosate, while the GR50 values of the R populations were between 5.4 and 11.3 times higher than that for S population. The LD50 (herbicide dose to kill 50% of individuals of a weed population) values of the S population were ≤150 g ea ha−1 glyphosate, while the LD50 of the R populations ranged from 600 to 920 g ea ha−1. Based on the reduction of fresh weight and the survival rate, the R1 population showed the highest level of glyphosate resistance, which had GR50 and LD50 values of 248 and 918 g ea ha−1 glyphosate, respectively. The S population accumulated 240 µg shikimic acid at 1000 µM glyphosate, while the R1, R2, and R-IAC populations accumulated only 16, 43, and 33 µg shikimic acid, respectively (between 5.6 to 15 times less than the S population). Enzyme activity assays suggested that at least one target site-type mechanism was involved in resistance. This result revealed the first report of glyphosate resistance in A. viridis reported in the world.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 496
Author(s):  
Verónica Hoyos ◽  
Guido Plaza ◽  
José G. Vázquez-Garcia ◽  
Candelario Palma-Bautista ◽  
Antonia M. Rojano-Delgado ◽  
...  

This paper reports the first C. radiata population with resistance to glyphosate and multiple resistance to the acetolactate synthase (ALS) inhibitor, imazamox. Two populations, one putative resistant (R) and one susceptible (S), were used in the studies. Dose–response experiments were performed to evaluate the resistance factor (RF). Shikimic acid accumulation, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) and ALS enzyme activities were studied together with chemical integrated weed management (adjuvants and alternative herbicides). The resistance to glyphosate and imazamox was confirmed based on the dry weight reduction, visual evaluation and survival. The results of dose–response curve assays showed for the R population intermedium RF for glyphosate (5.1 and 9.7 for amount of herbicide needed to reduce the dry weight by 50% GR50 and lethal dose of 50% LD50, respectively) and high RF for imazamox (34.9 and 37.4, respectively). The low shikimic acid accumulation in R population confirmed the glyphosate resistance. The glyphosate concentration which inhibited the EPSPS enzyme in 50% (I50) was approximately 20 times higher for R population than the S population, while the imazamox I50 in ALS enzyme for the R plants was 89 times greater than the S plants. In the chemical integrated weed management, the foliar retention and effectivity assays showed that the use of adjuvants improves the retention of glyphosate and imazamox, and the reduction in dry weight of weeds. The alternative herbicides study showed that the acetyl-CoA carboxylase (ACCase) inhibitors, paraquat and glufosinate, had better results for control in this species. However, poor control was observed with bispyribac-sodium, metsulfuron-methyl and quinclorac, indicating possible cross-resistance for ALS-inhibitors and also multiple resistance for auxinic herbicides (quinclorac). Nevertheless dose–response experiments are required to confirm this assumption.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1056
Author(s):  
Ilias Travlos ◽  
Panagiotis Kanatas ◽  
Anastasia Tsekoura ◽  
Ioannis Gazoulis ◽  
Panayiota Papastylianou ◽  
...  

E. colona is a C4 annual summer grass which is troublesome to major summer annual and perennial crops. Due to recent complaints by the farmers, the objectives of the present study were to evaluate the efficacy of penoxsulam, profoxydim, cycloxydim, cyhalofop-butyl, florpyrauxifen-benzyl and glyphosate against six E. colona accessions, and also to evaluate the response of these accessions to different rates of glyphosate in a dose-response experiment. In the first experiment, herbicides were applied at their maximum recommended label rates, while in the dose-response experiment, glyphosate was applied at six doses corresponding to 0, 1/4X, 1/2X, X, 2X, and 4X of the recommended rate. The dry weight of the biotypes TH8 and TH7 treated with profoxydim was 66% and 68% of the untreated control, respectively. The efficacy of cyhalofop-butyl against three accessions was lower than 30%, while two accessions were susceptible to this herbicide. The efficacy of penoxsulam against the biotypes ET2 and ET4 was lower than 10%, while dry weight of FT5 and TH8 was only reduced by 23%–28% as compared to the control. Cycloxydim application provided control higher than 75% at 21 days after treatment (DAT) of three accessions, while the majority of E. colona accessions was adequately controlled by the application of florpyrauxifen-benzyl. The response of the different accessions to glyphosate varied. The results of the glyphosate dose-response experiment revealed that the GR50 values of the resistant E. colona accessions ET2 and ET4 were up to 1098 and 1220 g a.e. ha−1 of glyphosate, respectively, whereas the GR50 value of the susceptible accession (FT5) was only 98 g a.e. ha−1. The resistance indices of ET2 and ET4 were 12.4 and 11.2, respectively, indicating that they have already developed resistance to glyphosate. Three more accessions could be also of developing resistant to glyphosate. This is the first report of glyphosate resistance from E. colona accessions in Greece, with indications of multiple resistance also present. Further research is needed in order to evaluate the efficacy of several herbicides under different soil and climatic conditions, conduct baseline sensitivity studies, reveal the evolvement of resistance patterns to glyphosate from accessions of Echinochloa spp., and search for alternative options of weed management in annual and perennial crops due to the clear indications of multiple resistance situations.


2015 ◽  
Vol 45 (9) ◽  
pp. 1557-1563 ◽  
Author(s):  
Guilherme Vestena Cassol ◽  
Luis Antonio de Avila ◽  
Carla Rejane Zemolin ◽  
Andrey Piveta ◽  
Dirceu Agostinetto ◽  
...  

<p>Dose-response experiments were carried out to evaluate the sensitivity of imidazolinone-resistant red rice to nonselective herbicides currently used in rice-soybean rotation in Rio Grande do Sul. Two red rice biotypes previously identified as resistant and susceptible to the imidazolinone herbicides were treated with imazapic plus imazapic, glyphosate and glufosinate under nine herbicide rates. A non-linear log-logistic analysis was used to estimate the herbicide rate that provided 50% red rice control and dry weight reduction (GR<sub>50</sub>). Imidazolinone-resistant red rice exhibited greater GR<sub>50</sub> values than imidazolinone-susceptible biotype for imazapyr plus imazapic. In contrast, both imidazolinone-resistant and susceptible red rice showed similar GR<sub>50</sub>values for glyphosate and glufosinate. These results indicate that glyphosate and glufosinate effectively control imidazolinone-resistant red rice at similar herbicide rates used to control imidazolinone-susceptible; however, integrated weed management practices must be adopted in rice-soybean rotation to delay resistance evolution of red rice populations to glyphosate and glufosinate</p>


2021 ◽  
Vol 23 (2) ◽  
pp. 121-128
Author(s):  
Advent F. Sitanggang ◽  
Marulak Simarmata ◽  
Bilman Wilman Simanihuruk ◽  
Uswatun Nurjanah

[ALLELOCHEMICAL POTENTIAL OF AQUEOUS EXTRACT AND MULCH OF PLANT BIOMASS OF SORGHUM (Sorgum bicolor L. Moench)]. This study was aimed to examine the allelopathic potential of sorghum through aqueous extract and mulch from biomass on seed germination and early growth of three tested plants, namely rice, mustard and cucumber. The results showed that the aqueous extract of the sorghum biomass significantly inhibited the germination of mustard and cucumber seeds, reduced the vigor-index of the germination of rice, mustard and cucumber seeds, and suppressed the growth of radicle length of mustard sprouts. The same thing was seen when sorghum biomass was tested as mulch which also suppressed the early growth of the tested plants on the variables of stem height, fresh and dry weight of biomass of rice, mustard and cucumber. The higher the concentration of allelochemicals extract or sorghum mulch, the stronger the inhibition on germination and early growth of the three test plants. At a concentration of 10% allelochemicals suppressed the germination of mustard and cucumber to 76 and 79%, respectively, while a dose of 10% mulch suppressed early growth in the height of rice, mustard, and cucumber to 56, 55, and 68%; and dry weight to 53, 30 and 60%. The results of this study are important information about the allelochemical potential of sorghum as a natural herbicide in integrated weed management


2008 ◽  
Vol 59 (2) ◽  
pp. 183 ◽  
Author(s):  
Alexa N. Seal ◽  
James E. Pratley ◽  
Terry Haig

Several weeds of rice in Australia have developed resistance to the main herbicide available for their control. Allelopathy is one phenomenon that could be incorporated into an integrated weed-management system as a supplement or alternative to synthetic herbicides. Several rice cultivars were screened both in the laboratory and the field for allelopathic potential against a major rice weed, Damasonium minus. Results from the laboratory bioassay showed that there were significant differences among cultivars in their ability to inhibit D. minus root growth. D. minus root lengths ranged from 2.0% (cv. Hungarian #1) to 32.6% (cv. Rexmont) that of the control. In the field study, significant differences existed in the D. minus dry matter grown in association with different cultivars, ranging from 4.6% (cv. Tono Brea) to 72.2% (cv. Rexmont) that of the control. Comparison between laboratory and field results indicated a strong relationship between performance in the field and in the laboratory (r2 = 0.713). Those cultivars ranked as allelopathic in the bioassay tended to have associated lower D. minus dry weight in the field. Eight of the top 10 allelopathic cultivars in the bioassay were among the top 10 suppressive cultivars in the field trial. This important finding indicates that at least some of the variation in field performance of cultivars may be predicted by their performance in bioassays.


2011 ◽  
Vol 4 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Timothy W. Miller ◽  
Danielle E. D'Auria

AbstractWild chervil is an invasive biennial or short-lived perennial weed introduced into North America that negatively impacts forage production and degrades habitat for native plant species. A 2-yr study using prebloom mowing followed by combinations of herbicide, tillage, and grass seeding was conducted in the Pacific Northwest to identify an effective integrated weed management strategy for this species. By 2 mo after herbicide treatment (MAHT), wild chervil control with glyphosate + ammonium sulfate (AMS) and clopyralid was 83 and 73%, respectively. Tillage with or without herbicide pretreatment resulted in 92 to 98% wild chervil control at 2 MAHT, whereas herbicide without tillage gave only 45% control across all treatments. Tillage with or without subsequent grass seeding reduced wild chervil density four-fold compared to herbicide alone at 9 MAHT. Herbicide + tillage + grass seeding resulted in similar wild chervil cover (1 to 5% cover) as herbicide + tillage (1 to 6% cover) without subsequent grass seeding. Wild chervil biomass at 1 yr after herbicide treatment (YAHT) was reduced to 487 kg ha−1 (439 lb ac−1) with herbicide + tillage compared to 4,256 kg ha−1 for herbicide treatment alone. Herbicide + tillage + grass seeding increased grass dry weight at 1 YAHT from 201 kg ha−1 for herbicide + tillage to 1,575 kg ha−1, compared to 351 kg ha−1 in herbicide-only plots.


2008 ◽  
Vol 22 (4) ◽  
pp. 602-608 ◽  
Author(s):  
Rodrigo Figueroa ◽  
Marlene Gebauer ◽  
Albert Fischer ◽  
Marcelo Kogan

Bensulfuron-methyl (BSM) has been one of the most widely used herbicides in Chilean rice fields because it controls a wide spectrum of weeds and does not require field drainage for application. However, failures of BSM to control water plantain in rice fields have been noted since 2002. We assessed BSM effects on suspected resistant (CU1 and CU2) and susceptible (AN1) water plantain accessions collected in Chilean rice fields during 2004 and 2005. BSM rates resulting in 50% growth reduction (GR50) of CU2 and CU1 plants were 12- and 33-fold higher than for AN1 plants, respectively. Acetolactate synthase (ALS) activity assays in vitro suggested resistance in CU1 and CU2 was due to an ALS enzyme with reduced BSM sensitivity compared to the AN1 biotype. Resistance indices (RI), or ratios of the resistant to susceptibleI50values (BSM rate to inhibit ALS-enzyme activity by 50%), were 266 (CU2/AN1) and > 38,462 (CU1/AN1). This agreed with in vivo ALS activity assays whereRIwere 224 (CU2/AN1) and > 8,533 (CU1/AN1). Resistance levels detected in whole-plant or in vivo ALS activity assays were orders of magnitude lower than those detected in in vitro ALS activity studies suggesting nontarget site mechanisms may have mitigated BSM toxicity. However, a consistent ranking of BSM sensitivity levels (AN1 > CU2 > CU1) throughout all three types of assays suggests resistance is primarily endowed by low target site sensitivity. We conclude that susceptible and resistant water plantain biotypes coexist in Chilean paddies, and the use of integrated weed management involving herbicides with a different mode of action would be imperative to prevent further evolution of resistance to BSM and possibly cross-resistance to other ALS inhibitors. In vitro ALS-enzyme assays provided the best discrimination of resistance levels between biotypes.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 258-266 ◽  
Author(s):  
Miki Okada ◽  
Marie Jasieniuk

Inheritance of glyphosate resistance was investigated in hairy fleabane populations from California as part of providing the information needed to predict and manage resistance and to gain insight into resistance mechanism (or mechanisms) present in the populations. Three glyphosate-resistant individuals grown from seed collected from distinct sites near Fresno, CA, were crossed to individuals from the same susceptible population to create reciprocal F1populations. A single individual from each of the F1populations was used to create a backcross population with a susceptible maternal parent, and an F2population. Based on dose response analyses, reciprocal F1populations were not statistically different from each other, more similar to the resistant parent, and statistically different from the susceptible parent, consistent with nuclear control of the trait and dominance to incomplete dominance of resistance over susceptibility in all three crosses. Glyphosate resistance in two of the three crosses segregated in the backcross and the F2populations as a single-locus trait. In the remaining cross, the resistant parent had approximately half the resistance level as the other two resistant parents, and the segregation of glyphosate resistance in backcross and F2populations conformed to a two-locus model with resistance alleles acting additively and at least two copies of the allele required for expression of resistance. This two-locus model of the segregation of glyphosate resistance has not been reported previously. Variation in the pattern of inheritance and the level of resistance indicate that multiple resistance mechanisms may be present in hairy fleabane populations in California.


Weed Science ◽  
2006 ◽  
Vol 54 (5) ◽  
pp. 917-922 ◽  
Author(s):  
Matthew M. Harbur ◽  
Micheal D. K. Owen

Nitrogen (N) management markedly affects weed competition with crops. The effect of N availability on plant competition varies with a plant's abilities to capture and use N. Accordingly, we expected the N effect on plant competition to change with the relative emergence time of competing individuals. This hypothesis was tested by growing corn and velvetleaf plants in target and neighbor roles and comparing their N responses. Sowing times were varied, so that target plant emergent dates were constant, whereas neighbor plants were sown to emerge 7 d before, with, or 7 d after targets. Seedlings were fertilized daily with 2.5 mmol (“low N”) or 10.0 mmol (“high N”) ammonium nitrate (NH4NO3). Corn had greater total weight, leaf area, and root-to-shoot ratio (RSR) than velvetleaf. Different dry weights may have reflected seed weights; corn seed weight was greater than velvetleaf. Regardless of role, corn and velvetleaf dry weight and leaf area were greater with high N than low N; in contrast, RSR was lower with high N than low N. The RSR response to N availability suggested plant resources were shifted from N foraging, toward competition for photosynthetically active radiation (PAR). In target plants of each species, dry weight and leaf area increased linearly with time between target and neighbor emergence. Conversely, dry weight and leaf area of neighbor plants decreased with time between target and neighbor emergence. The N response of neighbor plants increased with time of emergence between target and neighbor emergence. Larger plants likely required more N to sustain growth than smaller plants; plants that emerged earlier likely had greater daily N requirements than those that emerged later. These results support factoring in emergence when predicting N effects on plant competition. Optimal N provisioning for integrated weed management may differ with emergence times of competing plants.


Sign in / Sign up

Export Citation Format

Share Document