scholarly journals Microalgae: New Source of Plant Biostimulants

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1240 ◽  
Author(s):  
Giuseppe Colla ◽  
Youssef Rouphael

Biostimulant manufacturers have developed innovative products targeting specific agronomic needs, hence attracting the attention of the scientific community, extension specialists, and industry stakeholders including policymakers and crop producers. Microalgae acquire a broad economic value in the production of nutrient dense food and supplementary diet produce, in addition to their high importance in biofuel production and wastewater bioremediation. Recently, microalgae, which comprise blue-green algae (eukaryotic and prokaryotic cyanobacteria), have gained prominence as biostimulant products due to their potential to increase germination, seedling growth, plant growth, productivity, nutrient use efficiency, as well as tolerance to a wide range of abiotic stresses (salinity, drought, sub- and supra-optimal temperatures, and heavy metals contamination). Although it is well established that green and blue-green algae produce several bioactive and signaling molecules active on horticultural and agronomic crops, their targeted applications in plant science are still in their infancy stage. The aim of this editorial paper is to provide an updated overview of this far-reaching new category of plant biostimulants and the possible physiological and molecular mechanisms behind the biostimulatory action based on the recent scientific literature. Finally, this editorial paper identifies the main bottlenecks that hamper market introduction and farmers from reaping the full benefit of microalgae-based biostimulants; it also pinpoints the future relevant areas of microalgae research to enhance the biostimulant action of microalgal extracts in agriculture.

2011 ◽  
Vol 278 (1719) ◽  
pp. 2745-2752 ◽  
Author(s):  
Nicole Coggan ◽  
Fiona J. Clissold ◽  
Stephen J. Simpson

Because key nutritional processes differ in their thermal optima, ectotherms may use temperature selection to optimize performance in changing nutritional environments. Such behaviour would be especially advantageous to small terrestrial animals, which have low thermal inertia and often have access to a wide range of environmental temperatures over small distances. Using the locust, Locusta migratoria , we have demonstrated a direct link between nutritional state and thermoregulatory behaviour. When faced with chronic restrictions to the supply of nutrients, locusts selected increasingly lower temperatures within a gradient, thereby maximizing nutrient use efficiency at the cost of slower growth. Over the shorter term, when locusts were unable to find a meal in the normal course of ad libitum feeding, they immediately adjusted their thermoregulatory behaviour, selecting a lower temperature at which assimilation efficiency was maximal. Thus, locusts use fine scale patterns of movement and temperature selection to adjust for reduced nutrient supply and thereby ameliorate associated life-history consequences.


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1461 ◽  
Author(s):  
Youssef Rouphael ◽  
Giuseppe Colla

Modern agriculture increasingly demands an alternative to synthetic chemicals (fertilizers and pesticides) in order to respond to the changes in international law and regulations, but also consumers’ needs for food without potentially toxic residues. Microbial (arbuscular mycorrhizal and plant growth promoting rhizobacteria: Azotobacter, Azospirillum and Rizhobium spp.) and non-microbial (humic substances, silicon, animal- and vegetal-based protein hydrolysate and macro- and micro-algal extracts) biostimulants represent a sustainable and effective alternative or complement for their synthetic counterparts, bringing benefits to the environment, biodiversity, human health and economy. The Special Issue “Toward a sustainable agriculture through plant biostimulants: from experimental data to practical applications” compiles 34 original research articles, 4 review papers and 1 brief report covering the implications of microbial and non-microbial biostimulants for improving seedling growth and crop performance, nutrient use efficiency and quality of the produce as well as enhancing the tolerance/resistance to a wide range of abiotic stresses in particular salinity, drought, nutrient deficiency and high temperature. The present compilation of high standard scientific papers on principles and practices of plant biostimulants will foster knowledge transfer among researchers, fertilizer and biostimulant industries, stakeholders, extension specialists and farmers, and it will enable a better understanding of the physiological and molecular mechanisms and application procedure of biostimulants in different cropping systems.


Author(s):  

An assessment of the pollution of a surface source of water supply (the Kuibyshev reservoir) with metabolites of cyanobacteria (blue-green algae) under conditions of an increase in biogenic load is carried out. During the period of mass development of cyanobacteria, the quality of water in the reservoir deteriorates in terms of a number of indicators, including smell, taste, and content of organic and toxic substances. Among the wide range of cyanoxins, the greatest danger to the population is microcystin-LR, the concentration of which in drinking water should not exceed 1 μg/dm3. The growth of anthropogenic load and global warming of the climate create favorable conditions for the rapid development of cyanobacteria, therefore, the problem of providing the population with high-quality drinking water will only worsen in the future. Traditional methods used at drinking water treatment plants in Volga cities are ineffective in removing intracellular and extracellular cyanotoxins. The best and safest barrier against the ingress of cyanotoxins into drinking water can be membrane technologies that allow ultrafiltration of bacterial cells without mechanical damage and nanofiltration of cyanotoxins dissolved in water.


2021 ◽  
Vol 9 (4) ◽  
pp. 129-135
Author(s):  
Vivek Kumar Yadav ◽  
◽  

The pigment content in Blue-green algae is a specific feature of each species. The pigment variation is specific features among microalgae. The paper aim to analyze cyanobacterial extracts of different Usar soil of Azamgarh and Varanasi, Uttar Pradesh. The main object here is the importance of the blue green algae especially because of the pigments present in this class of algae. Pigments from natural sources are gaining more importance mainly due to health and environmental issues. Algae contain a wide range of pigments. Three major classes of pigments are chlorophylls, carotenoids (carotenes and xanthophylls) and phycobilins (Phycocyanin and phycoerythrin). Our present study investigates the efficiency for phycobiliprotein pigment production from four different cyanobacteria Hapalosiphon sp., Phormidium sp., Anabaena sp. and Nostoc sp. The harvested and dried biomass was subjected to extract pigments using different solvents. Thin Layer Chromatography was performed from extracted pigments using Acetone as extraction solvents. And running solvent especially for phycocyanin pigment was optimized and concluded that Petroleum ether and Acetone in the ratio of 7:3. This paper presents the information about the natural pigments of cyanobacteria and how they can be extracted and identified using different procedures and spectrophotometry. It emphasizes that the principal algal pigments are Phycobilins, Chlorophylls and Carotenoids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yinan Wang ◽  
Xinyao Miao ◽  
Zicheng Zhao ◽  
Yonghui Wang ◽  
Shuaicheng Li ◽  
...  

Donkeys (Equus asinus) are important livestock with great economic value in meat, skin, and milk production. However, a lack of knowledge of the transcriptome landscape across a wide range of donkey tissues limits genetic selective breeding and conservation. Here we used transcriptomics to describe the transcriptome landscape, classify the tissue-specific gene expression across all primary donkey tissues, and present supplementary analyses on the protein level of additional donkey milk samples. Overall, 16,013 protein-coding genes and 21,983 transcripts were mapped to the reference genome, including 6,778 ubiquitously expressed genes and 2,601 tissue-enriched genes. Functional analysis revealed that the function of the tissue-enriched genes was highly tissue specific. Tissue-elevated genes that could be associated with unique phenotypes in donkey were analyzed. The results showed that, compared with those in human and other livestock, the lysozyme gene in donkey breast was specifically and highly expressed. The calcium-binding lysozyme, encoded by the lysozyme gene, was also detected in high amounts in donkey milk. Given those intact lysozyme genes that predict potentially functional calcium-binding lysozyme found in only a few species (e.g., donkey and horse), the high expression of the lysozyme gene in donkey breast may contribute to the high lysozyme content in donkey milk. Furthermore, 71% of the proteins in donkey milk overlapped with human milk protein, higher than the overlapping rates of bovine, sheep, and swine with humans. The donkey transcriptomic resource contributes to the available genomic resources to interpret the molecular mechanisms underlying phenotype traits.


Author(s):  
Linda M. Sicko

Polyphosphate appears to be a ubiquitous component of all microorganisms. Electron microscopic examination of blue-green algae reveals bodies which are usually spherical, and have a wide range of electron densities. From work conducted in our laboratory, it appears that the image of the polyphosphate bodies varies with the culture conditions as well as the stage of development under constant culture conditions. The following report describes the various images one can observe.For most experiments, the blue-green algae were fixed by the method of Pankratz and Bowen. The algae were pelleted, the culture media poured off, and the pellet was resuspended in 1% OsO4 buffered at pH 6.2 for 3 hours at room temperature.


1972 ◽  
Vol 129 (2) ◽  
pp. 285-290 ◽  
Author(s):  
O. Th. Schönherr ◽  
H. M. Keir

1. The activities of DNA polymerase preparations from the algae Euglena gracilis, Chlamydomonas reinhardtii, Chlorella pyrenoidosa, Anabaena variabilis and Anacystis nidulans were measured. The blue–green algae Anabaena and Anacystis contain a 5–20-fold higher activity of the enzyme than do the green algae. DNA polymerases from the blue–green algae show a pH optimum of 9 and prefer a relatively low Mg2+concentration (1–3mm). DNA polymerases from the green algae, however, display a pH optimum between 7.5 and 8.5 and an optimum Mg2+concentration of 8mm. With all algae, a higher polymerase activity was obtained with denatured salmon sperm DNA as template than with native DNA. All four deoxyribonucleoside 5′-triphosphates must be present for full activity of the polymerases. 2. With one exception, the deoxyribonuclease activities in the preparations, measured under conditions of the DNA polymerase assay, are low compared with corresponding preparations from Escherichia coli. Chlamydomonas extracts contain a high deoxyribonuclease activity. 3. After purification on columns of DEAE-cellulose, the polymerase activity was linear over a wide range of protein concentrations, except for Chlamydomonas preparations, where the observed deviation from linearity was probably attributable to the high nuclease activity. 4. DNA polymerases from all these algae bind strongly to DNA–cellulose; 6–40-fold purifications of the enzyme were obtained by chromatography on columns of DNA–cellulose. 5. The partially purified polymerases of Euglena and Anacystis are heat-labile but become much more heat-stable when tested in the presence of DNA.


2013 ◽  
Vol 14 (3) ◽  
pp. 29-32
Author(s):  
D.R. Khanna ◽  
Rajni Rana ◽  
Fouzia Ishaq

The phytoplankton shows an ability to tolerate a wide range of environmental conditions. Under natural condition, they usually grow in the mixed community which may include many species and genera. The phytoplankton abundance and their impact on the water quality were studied in Paniyala fish pond, located in Roorkee Uttarakhand. Samples were collected monthly from March 2007 to February 2008 at four stations early in the morning. Physico-chemical parameters like temperature, conductivity, turbidity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), total alkalinity and chloride were measured simultaneously. Monthly variations were quite evident and showed maximum phytoplankton abundance in the month of January (3631.75 Unit/l). Three divisions of phytoplankton were found which include diatoms, green algae and blue green algae. The greatest number of individuals was reported in diatoms (1610.0±909.97 Unit/l) followed by green algae (178.29±109.02 Unit/l) and blue green algae (38.42±24.13 Unit/l). Effects of eutrophication were evident from this study with increased biomass of phytoplankton and water quality was deteriorated to some extent resulting in threat to fish fauna in it.


Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Sign in / Sign up

Export Citation Format

Share Document