scholarly journals Field Robots for Intelligent Farms—Inhering Features from Industry

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1638
Author(s):  
Pablo Gonzalez-de-Santos ◽  
Roemi Fernández ◽  
Delia Sepúlveda ◽  
Eduardo Navas ◽  
Luis Emmi ◽  
...  

Estimations of world population growth urgently require improving the efficiency of agricultural processes, as well as improving safety for people and environmental sustainability, which can be opposing characteristics. Industry is pursuing these objectives by developing the concept of the “intelligent factory” (also referred to as the “smart factory”) and, by studying the similarities between industry and agriculture, we can exploit the achievements attained in industry for agriculture. This article focuses on studying those similarities regarding robotics to advance agriculture toward the concept of “intelligent farms” (smart farms). Thus, this article presents some characteristics that agricultural robots should gain from industrial robots to attain the intelligent farm concept regarding robot morphologies and features as well as communication, computing, and data management techniques. The study, restricted to robotics for outdoor farms due to the fact that robotics for greenhouse farms deserves a specific study, reviews different structures for robot manipulators and mobile robots along with the latest techniques used in intelligent factories to advance the characteristics of robotics for future intelligent farms. This article determines similarities, contrasts, and differences between industrial and field robots and identifies some techniques proven in the industry with an extraordinary potential to be used in outdoor farms such as those derived from methods based on artificial intelligence, cyber-physical systems, Internet of Things, Big Data techniques, and cloud computing procedures. Moreover, different types of robots already in use in industry and services are analyzed and their advantages in agriculture reported (parallel, soft, redundant, and dual manipulators) as well as ground and aerial unmanned robots and multi-robot systems.

Author(s):  
Soyab A Jamadar ◽  

Cleaning of the AC ducts is the need because it creates problems such as the bad indoor air quality which results in health issues and it also causes the large maintenance of the system. The uncleaned air ducts become home for fungi, dust and harmful microbial. The causes and effects of this thing are mentioned following. The AC ducts can be cleaned through various methodologies i.e. conventional and by using robots. In the conventional system, there is manual cleaning by using some equipment. Cleaning the ducts by using robots would be a good solution for this. Different types of robot systems i.e. crawling robot, articulated robot and inspection robot are deployed for the application. There are different types of robots and their equipment according to size and type of duct. The cleaning of rectangular shape ducts is quite difficult than others. Finally, it results that cleaning ducts is the most important thing and using robots is the best methodology for it.


Agrotek ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Baso Daeng

<em>The rate of conversion of paddy fields and irrigation water crisis suggest to consider the development of upland rice.� Empowerment of organic-based dryland done to increase rice, as well as environmental sustainability efforts.� The purpose of this experiment was to determine the effect of organic fertilizer residue to upland rice in the second growing season.� Experiments using a split-split plot design.� The main plot consisted of a dosage of 50% and 100% organic fertilizer in the first growing season.� Sub plot consisted of chicken manure (20 tons ha<sup>-1</sup>), <span style="text-decoration: underline;">Centrosema</span>� <span style="text-decoration: underline;">pubescens</span> (4.3 tons ha<sup>-1</sup>) + chicken manure (10 tons ha<sup>-1</sup>), and <span style="text-decoration: underline;">Thitonia</span> <span style="text-decoration: underline;">diversifolia</span> (4.3 tons ha<sup>-1</sup>) + chicken manure (10 tons ha<sup>-1</sup>).� Sub-sub plot consist of Danau Gaung and Batu Tegi varieties.� The different types of fertilizer had no effect on plant productivity.� The addition of <span style="text-decoration: underline;">Thitonia</span> <span style="text-decoration: underline;">diversifolia</span> gave a good effect on some growth variable and its resistance due pathogen attack.� Batu Tegi varieties are varieties that give the best response from an organic fertilizer.� Interaction between dosage, type of fertilizer, and varieties do not provide areal impact.</em>


2020 ◽  
Vol 13 (5) ◽  
pp. 818-826
Author(s):  
Ranjan Kumar Panda ◽  
A. Sai Sabitha ◽  
Vikas Deep

Sustainability is defined as the practice of protecting natural resources for future use without harming the nature. Sustainable development includes the environmental, social, political, and economic issues faced by human being for existence. Water is the most vital resource for living being on this earth. The natural resources are being exploited with the increase in world population and shortfall of these resources may threaten humanity in the future. Water sustainability is a part of environmental sustainability. The water crisis is increasing gradually in many places of the world due to agricultural and industrial usage and rapid urbanization. Data mining tools and techniques provide a powerful methodology to understand water sustainability issues using rich environmental data and also helps in building models for possible optimization and reengineering. In this research work, a review on usage of supervised or unsupervised learning algorithms in water sustainability issues like water quality assessment, waste water collection system and water consumption is presented. Advanced technologies have also helped to resolve major water sustainability issues. Some major data mining optimization algorithms have been compared which are used in piped water distribution networks.


2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


2013 ◽  
Vol 29 (1) ◽  
pp. 155-175 ◽  
Author(s):  
Thomas L. Holzer ◽  
James C. Savage

Modern global earthquake fatalities can be separated into two components: (1) fatalities from an approximately constant annual background rate that is independent of world population growth and (2) fatalities caused by earthquakes with large human death tolls, the frequency of which is dependent on world population. Earthquakes with death tolls greater than 100,000 (and 50,000) have increased with world population and obey a nonstationary Poisson distribution with rate proportional to population. We predict that the number of earthquakes with death tolls greater than 100,000 (50,000) will increase in the 21st century to 8.7±3.3 (20.5±4.3) from 4 (7) observed in the 20th century if world population reaches 10.1 billion in 2100. Combining fatalities caused by the background rate with fatalities caused by catastrophic earthquakes ( >100,000 fatalities) indicates global fatalities in the 21st century will be 2.57±0.64 million if the average post-1900 death toll for catastrophic earthquakes (193,000) is assumed.


2009 ◽  
Vol 62-64 ◽  
pp. 275-292
Author(s):  
R.H. Weston

With increased product dynamics world-wide, the average economic lifetime of production systems is falling. Industrial robots are widely assumed to be inherently flexible and therefore that they can function as a programmable building block of response production systems. This paper reviews common capabilities of contemporary industrial robotic systems and investigates their capability to extend the useful lifetime of production system by coping with different types of product dynamic. Also considered are relative capabilities of conventional programmable robots and an emerging generation of programmable and configurable component-based machines.


2017 ◽  
Vol 107 (09) ◽  
pp. 594-599
Author(s):  
A. Magaña ◽  
G. Prof. Reinhart

Industrieroboter sind zu einer Schlüsseltechnologie in der Produktion geworden. Mit dem steigenden Einsatz von diversen Robotersystemen wächst das Bedürfnis, deren Kompatibilität zu steigern. Heutzutage gibt es keine Technologie in der Industrie, die eine standardisierte Programmierung und Steuerung von verschiedenen Robotersystemen gewährleisten kann. Dieser Fachbeitrag präsentiert ein einheitliches Konzept, welches die Anwendung von herstellerneutralen Roboterapplikationen ermöglicht. &nbsp; Industrial robots have become a key technology in production. The increasing use of various robotic systems, raises the need to enhance their compatibilit.y Nowadays, there is no technology in the industry to guarantee a standardized programming and control of different robot systems. This article presents a concept enabling the use of manufacturer-independent robot applications.


Sign in / Sign up

Export Citation Format

Share Document