scholarly journals Root Zone Management for Improving Seedling Quality of Organically Produced Horticultural Crops

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 630
Author(s):  
Domenico Ronga ◽  
Antonella Vitti ◽  
Massimo Zaccardelli ◽  
Catello Pane ◽  
Federica Caradonia ◽  
...  

Currently, vegetable production systems have been changed to improve yield and quality, leading to an improvement in sustainability. In horticultural cultivation, one of the most important sectors is the seedling production in nurseries. In the past, horticultural seedlings were produced directly by farmers. Nowadays, industrialized nurseries provide seedlings characterized by a uniform growth and an early and contemporaneous development. In addition, consumer concern about the impact of food production on the environment is driving an increased demand for organic vegetables with a consequent increase of agricultural land cultivated by organic methods. Hence, there is a need to produce high-quality seedlings suitable to be cultivated in the organic farming system. Root zone management, for improving seedling quality of organic horticultural crops, remains largely unexploited, such that this review highlights some of the current research and future development priorities, providing useful information to nursery growers. In particular, we reviewed all the scientific and modern knowledge on the production of organic, healthy and vigorous seedlings including the use of: (1) compost and compost tea; (2) agroindustrial byproducts; (3) microbial and non-microbial plant biostimulants; (4) beneficial microorganisms.

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 209
Author(s):  
Maria Raimondo ◽  
Francesco Caracciolo ◽  
Concetta Nazzaro ◽  
Giuseppe Marotta

While there is growing recognition of the positive role played by organic farming in the reduction of the negative externalities due to conventional agriculture, there is uncertainty about the effect of the latter on the economic performance of the farms. In this scenario, the present paper aims at investigating the effect of organic farming on technical efficiency in Italian olive farms. A cross-section dataset was analyzed through the stochastic frontier function, where the adoption of organic farming was explicitly modeled. Then, to obtain an unbiased estimate of the impact of organic farming on technical efficiency, a propensity score matching method was implemented. The findings reveal that organic farming increases technical efficiency in Italian olive farms by approximately 10%. The highest impact of organic farming is observed in small farms. As for the propensity to become organic, we found that the production and the direct sales of a higher quality of gross marketable output, as well as the intensity of labor and machines, increase the probability to adopt organic farming. Conversely, farm localization, the availability of family labor, and financial capital discourage conversion to the organic farming system.


2021 ◽  
Author(s):  
Joann Whalen

Abstract Horticulture involves growing crops and ornamental plants in indoor and outdoor environments. Horticultural crops include food crops such as vegetables and fruits (including tree fruits, small fruits and grapes), as well as nut- and seed-bearing plants, herbs and spices. Many non-food crops are also managed by horticulturalists, including medicinal plants, tobacco, hemp, ornamental plants and flowers. Horticultural crops grow naturally in temperate, sub-tropical and tropical climates of the world, although many of these crops are sufficiently robust that they can be grown in any suitable controlled environment. In 2015, astronauts on the International Space Station grew, harvested and ate red romaine lettuce from their VEGGIE system (Vegetable Production System), which has successfully produced lettuce, Swiss chard, radishes, Chinese cabbage and peas in simulated space environments. The VEGGIE is equipped with adequate lighting, water and nutrients to grow vegetables, relying on the space station's cabin environment for temperature and pressure control, and as a source of carbon dioxide for plant growth (NASA, 2016). Most horticultural crops are planted in soil, although modern cultivation techniques include other media, such as peat-based soil, compost, and inert substrates such as rockwool. A suitable growing media must provide anchorage and stability for the plant roots, considering the diverse life histories of horticultural crops. For example, plants that complete their life cycle in one (annual) or two (biennial) growing seasons does not produce the extensive, deep root system of a woody perennial that lives for several decades. Without adequate anchorage, shrubs and trees are vulnerable to blow down in wind-storms if their roots are in loose, fluid soils or if the plant has a shallow root system on a rocky strata close to the surface. Wind rocking of a poorly-anchored seedling can lead to fine roots breakage and root system detachment from soil, causing the plant to tilt. Soil management refers to the way that soils are cultivated to support horticultural crop growth. Actively growing roots need oxygen for their metabolic function, so the soil must have a crumbly, porous structure that allows for gas exchange with the atmosphere. The porous soil structure permits oxygen diffusion to the root zone, and for carbon dioxide respired by the roots to leave the soil environment. Since plants roots are responsible for obtaining most of the water required for metabolic functions and cooling leaf surfaces, the soil must retain and supply water to the roots while avoiding waterlogging, which inhibits root functions. Soil also provides many essential plant nutrients for crop growth, such as nitrogen, phosphorus, potassium, calcium, magnesium, sulfur and micronutrients (boron, iron, copper, manganese, zinc, chloride, molybdenum and nickel). Nutrient uptake in the root system is facilitated by plant interactions with soil-dwelling microorganisms, both free-living and symbiotic, which are abundant in the root zone. Good soil management is essential to produce nutritious, high yielding food and to support the growth of non-food crops like herbaceous and woody ornamentals. Soil management specialists are responsible for maintaining the soil physical integrity, its chemical balance and soil microbial life necessary for growing horticultural crops.


2017 ◽  
Vol 63 (4) ◽  
pp. 33-38
Author(s):  
Jana Kodymová ◽  
Miroslav Kyncl ◽  
Hana Švehláková ◽  
Magdaléna Bártková

Abstract Waste from anaerobic digestion is considered as a mineral fertilizer and it is usually applied to agricultural land. The aim of our attempt was to enrich this waste from anaerobic digestion (digestate) with an organic component (in our case represented by haylage). For this purpose, we made different mixtures of digestate and haylage in different weight ratios. In the field trial, the effect of these mixtures on the soil, under standard agricultural conditions, was monitored. Selected accessible nutrients (P, K, Mg, Mn, Ca) and the amount of carbon and nitrogen in the soil were monitored. The results of the laboratory tests confirmed that the areas where the sowing and digestate mixtures were applied showed greater amounts of macro- and micronutrients in plant-accessible forms than the surface fertilized only with digestate or areas fertilized only with standard fertilizers.


Author(s):  
Md. Sirajul Islam ◽  
Shamim Al Mamun ◽  
Muliadi Muliadi ◽  
Sohel Rana ◽  
Tanmoy Roy Tusher ◽  
...  

2020 ◽  
Vol 9 (4) ◽  
Author(s):  
Halake Guyo Rendilicha ◽  
Patrick Home ◽  
James M. Raude ◽  
Charles M. M’Erimba ◽  
Stellamaris Muthoka

The study assessed the impact of land-use types on the groundwater quality of the mid River Njoro catchment, Kenya. Groundwater samples were collected from eight boreholes between the period of October 2017 to February 2018 and analyzed for pH, temperature, electrical conductivity, dissolved oxygen, nitrate, ammonium, and total phosphorus. These parameters were used to calculate the Groundwater Quality Index (GQI) value of the study area. The concentration maps (“primary maps I”) were constructed using Kriging interpolation of ArcGIS software from the seven groundwater quality parameters. The “primary maps I” were standardized with the KEBS and WHO standards to the “primary maps II” for ease of integration into a GIS environment. The “primary maps II” were then rated and weighted using a polynomial function to generate “rank maps” before calculating the GQI using spatial analyst tools of ArcGIS software. The land use map was prepared from a high-resolution Google earth satellite imagery of 2015. The mean GQI values for the different land use polygons were calculated and compared using GIS techniques. The GQI ranged from 68.38 to 70.92, indicating a high groundwater quality of mid River Njoro catchment. The major land-use types identified include settlement area, forest cover, agricultural land and mixed area. The agricultural land dominated the study area, followed by settlement area, forest cover and finally mixed area. The mean GQI value in each land use type varied minimally and this could be because of the diffuse nature of the land use types of the study area. Settlement area had low GQI, followed by agricultural land, mixed area and the forest cover had the highest mean GQI value, which corresponds to good quality of groundwater. Even though the variation is insignificant in this particular study, it somehow indicates the adverse effects of different land use on the quality of groundwater.


2021 ◽  
Vol 61 (7) ◽  
pp. 637
Author(s):  
Louise Edwards ◽  
Helen Crabb

Context Water is the first nutrient and an essential component of all agricultural production systems. Despite its importance there has been limited research on water, and in particular, the impact of its availability, management and quality on production systems. Aims This research sought to describe the management and quality of water used within the Australian pig industry. Specifically, the water sources utilised, how water was managed and to evaluate water quality at both the source and the point of delivery to the pig. Methods Fifty-seven commercial piggeries across Australia participated in this study by completing a written survey on water management. In addition, survey participants undertook physical farm parameter measurements including collecting water samples. Each water sample was tested for standard quality parameters including pH, hardness, heavy metals and microbiological status. Key results Responses were received from 57 farms, estimated to represent at least 22% of ‘large’ pig herds. Bore water was the most common water source being utilised within the farms surveyed. Management practices and infrastructure delivering water from the source to the point of consumption were found to differ across the farms surveyed. Furthermore, water was regularly used as a delivery mechanism for soluble additives such as antibiotics. The quality of water at the source and point of consumption was found to be highly variable with many parameters, particularly pH, hardness, salinity, iron, manganese and microbiological levels, exceeding the acceptable standard. Conclusions In general, water quality did not appear to be routinely monitored or managed. As a result, farm managers had poor visibility of the potential negative impacts that inferior water quality or management may be having on pig production and in turn the economics of their business. Indeed, inferior water quality may impact the delivery of antibiotics and in turn undermine the industry’s antimicrobial stewardship efforts. Implications The study findings suggest that water quality represents a significant challenge to the Australian pig industry. Access to drinking water of an acceptable quality is essential for optimal pig performance, health and welfare but also to ensure farm to fork supply chain integrity, traceability and food safety.


2015 ◽  
Vol 10 (2) ◽  
pp. 588-592 ◽  
Author(s):  
Anil Kulshrestha ◽  
Y. K. Singh ◽  
S. K. Sen

The study was carried out in Bastpur micro watershed in Morena block of the Morena district of Madhya Pradesh during 2010-11.To assess the impact of watershed development programme in farming system. It could be found that the overall watershed development practices in the study area have positive and effective changes in agricultural area of bajra, and arhar , cropping productivity of gram and arhar, land use, use of land resources, water resources, and livestock due to increase in availability of water and use to improved agricultural inputs like improved seeds, recommended doges of fertilizers, required irrigation, plant protection measures,etc in the study area. It was also found positive change in agricultural land, irrigated area, area under horticultural and vegetables crops. Similarly cattle population was also increased due to sufficient availability of water and fodder in watershed area.


2018 ◽  
Vol 1 (2) ◽  
pp. 94
Author(s):  
Anis Sholihah ◽  
Nurhidayati Nurhidayati

Tegalweru village, Dau, Malang regency is known as a high producer of horticultural crops with a total area of horticultural crops to ± 336 ha or 80% of the total area of agricultural land. To maintain the productivity of horticultural crops is necessary land management system with organic inputs. However, the availability of compost in this village is still inadequate. Compost production system that is not running optimally, although it has been available the tools for composting. An understanding of composting technology is still low. Specific targets to be achieved in this activity is an increase in the compost product produced from compost production systems that exist in the two farmers groups Weru Asih I and II, who became a partner in this activity. IbM activities were implemented through several stages: (1) extension of composting technology and the role of organic matter (2) the training and mentoring of making compost, (3) Building composting home, and (4) Counseling and guidance of management system of sustainable compost production. The results of this work showed that horticultural farmers at Tegalweru village already can independently make compost with a high quality. This activity greatly helped to provide compost for farmers. It is also able to improve the understanding of the members of farmer group in maintaining soil fertility. For the sustainability of this program, implementation of barter management system between compost material with mature compost can be used as an initial step in the development of commercial compost production at Tegaweru village.


2018 ◽  
Vol 73 ◽  
pp. 04013
Author(s):  
Deddy Caesar Agusto ◽  
Eko Kusratmoko

The river is the main source of water in Indonesia, which at the moment, this quality tends to get worse and is no longer worth consuming for various needs. The cause of the pollution is the entry of pollutants both point source (industrial waste) and non-point source (residential and agricultural land). Rainfall can be a non-point source pollutant agent from a watershed to a water body. The impact of rainfall on increasing concentrations of pollutants is very significant, especially the high intensity rainfall that falls after the long dry season. In this study, water quality data is obtained from river outlets located in Damkamun taken every 30 minutes during the rainfall event so that fluctuation in water quality can be seen. Water quality indicators studied in this research are TDS, DHLNitrate, Phosphate and Ph. The author, in analyzing, using rainfall Himawari 8 which is obtained every 10 minutes. The result shows that rainfall is directly related to the water flow and the fluctuation of the discharge affects the water quality. From the calculations, the chemical quality of water is also influenced by the use of land in the watershed. Nitrate value increases when the occurrence of rain occurs in land use while phosphate experiences a high value during the event.


2002 ◽  
Vol 45 (9) ◽  
pp. 43-50 ◽  
Author(s):  
A. Joelsson ◽  
K. Kyllmar

In Kattegat and the coastal water of the Baltic Sea, high nitrogen input from agricultural land is considered to be the main reason for eutrophication. International agreements and governmental programs have set a target to reduce the anthropogenic nitrogen load by 50 percent. Improved nitrogen removal in treatment plants and efforts in agriculture have so far not decreased nitrogen transport to a sufficient extent. In this project the impact of agricultural practices on nitrogen leaching was investigated in two small agricultural catchments in Southwest Sweden. The root-zone leaching was estimated by an indexing technique. Simultaneously the transports in the stream outlets were monitored. During 1995 and 1999 the agricultural practices in the catchments were surveyed. Field data from the first survey indicated that fertilisation did not always match crop requirements, the area of undersown catch crop can be increased and autumn cultivation can be reduced. The second survey was preceded by an advisory campaign where each farmer was visited and presented with an environmental plan including fertilisation, cultivation, and crop rotation for the farm. The plan summarised the best management practices that could be realised under actual conditions. Results from the second survey showed that some changes in the agricultural practices were carried out after the advisory campaign. The nitrogen leaching from the root-zone was then estimated by the indexing technique, both for the time before and after the advisory program. The results showed that the estimated nitrogen leaching, as a mean value for 330 fields, decreased from 53 to 50 kgN ha−1, due to adjustments of the agricultural practices. Monitoring of stream transports showed values of the same magnitude after correction for retention and other sources. In this short time perspective, decreases in transport due to changes in agricultural practices could not be separated from influence of weather conditions. In comparison to results from the Swedish monitoring programme for agriculture, the measured transports were normal for the region, where annual variation in precipitation and runoff is large. Theoretically, nitrogen leaching could be reduced by one third without any major economic constraints for the farmers. In general, the farmers were positive to advice and willing to try new farming techniques even if some measurements were not fully implemented during the investigation period.


Sign in / Sign up

Export Citation Format

Share Document