scholarly journals Future-Proofing EU Legislation for Genome-Edited Plants: Dutch Stakeholders’ Views on Possible Ways Forward

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1331
Author(s):  
Jan Pieter van der Berg ◽  
Lianne M. S. Bouwman ◽  
Evy Battaglia ◽  
Gijs A. Kleter

Genome editing is an emerging, new breeding technology with numerous potential applications in plant breeding. In Europe, genome editing is regarded, in legal terms, as a genetic modification technique, hence plants obtained using these methods fall under the legislation for genetically modified organisms (GMOs). Despite the opportunities that genome editing brings to the plant sector, it also poses challenges to the regulatory system. For example, the enforcement of labelling and traceability requirements for GM foods and feeds may be impossible for small genome edits that are indistinguishable from natural mutations. In order to discuss potential adaptations of EU legislation with stakeholders from the Dutch plant breeding sector, five different scenarios of future regulation of plants obtained by means of genome editing were elaborated. These scenarios were discussed in depth, along with the potential applications of genome editing in plant breeding, as well as challenges and opportunities. Stakeholders particularly indicated their preference for new, future-proof legislation in the long term, which will also include products of novel technologies. Finally, we discuss potential short-term amendments to current legislation, including the exemption of certain small mutations, that would make it align with regulation of genome edited plants in non-EU countries.

Author(s):  
Wagh Sopan Ganpatrao ◽  
Pohare Manoj Baliram

Innovative plant breeding technology is an absolute necessity to enhance agriculture production in order to have an ambition of feeding nutritious food to the ever-increasing population. Current advances in CRISPR/Cas genome editing technology have led to effective targeted changes in most plants that promise to accelerate crop improvement. Here we discussed the discovery of CRISPR/Cas technology, associated manipulations for plant genome editing and its potential applications in the plant breeding. We emphasized mainly on the most essential applications of CRISPR/Cas genome editing in crop improvement, such as crop trait improvement (yield and biotic/abiotic stress tolerance), developments in optimizing gene regulation, strategies for generating virus resistance in plants, and the use of high throughput mutant libraries. Finally, the challenges and opportunities for plant breeding in precision agriculture and its bright future discussed.


2019 ◽  
Vol 70 (1) ◽  
pp. 667-697 ◽  
Author(s):  
Kunling Chen ◽  
Yanpeng Wang ◽  
Rui Zhang ◽  
Huawei Zhang ◽  
Caixia Gao

Enhanced agricultural production through innovative breeding technology is urgently needed to increase access to nutritious foods worldwide. Recent advances in CRISPR/Cas genome editing enable efficient targeted modification in most crops, thus promising to accelerate crop improvement. Here, we review advances in CRISPR/Cas9 and its variants and examine their applications in plant genome editing and related manipulations. We highlight base-editing tools that enable targeted nucleotide substitutions and describe the various delivery systems, particularly DNA-free methods, that have linked genome editing with crop breeding. We summarize the applications of genome editing for trait improvement, development of techniques for fine-tuning gene regulation, strategies for breeding virus resistance, and the use of high-throughput mutant libraries. We outline future perspectives for genome editing in plant synthetic biology and domestication, advances in delivery systems, editing specificity, homology-directed repair, and gene drives. Finally, we discuss the challenges and opportunities for precision plant breeding and its bright future in agriculture.


2021 ◽  
Vol 13 (5) ◽  
pp. 105
Author(s):  
Mohamed Yousif ◽  
Chaminda Hewage ◽  
Liqaa Nawaf

The COVID-19 pandemic provided a much-needed sanity check for IoT-inspired frameworks and solutions. IoT solutions such as remote health monitoring and contact tracing provided support for authorities to successfully manage the spread of the coronavirus. This article provides the first comprehensive review of key IoT solutions that have had an impact on COVID-19 in healthcare, contact tracing, and transportation during the pandemic. Each sector is investigated in depth; and potential applications, social and economic impact, and barriers for mass adaptation are discussed in detail. Furthermore, it elaborates on the challenges and opportunities for IoT framework solutions in the immediate post-COVID-19 era. To this end, privacy and security concerns of IoT applications are analyzed in depth and emerging standards and code of practices for mass adaptation are also discussed. The main contribution of this review paper is the in-depth analysis and categorization of sector-wise IoT technologies, which have the potential to be prominent applications in the new normal. IoT applications in each selected sector are rated for their potential economic and social impact, timeline for mass adaptation, and Technology Readiness Level (TRL). In addition, this article outlines potential research directions for next-generation IoT applications that would facilitate improved performance with preserved privacy and security, as well as wider adaptation by the population at large.


BioTech ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 10
Author(s):  
Michael F. Eckerstorfer ◽  
Marcin Grabowski ◽  
Matteo Lener ◽  
Margret Engelhard ◽  
Samson Simon ◽  
...  

An intensely debated question is whether or how a mandatory environmental risk assessment (ERA) should be conducted for plants obtained through novel genomic techniques, including genome editing (GE). Some countries have already exempted certain types of GE applications from their regulations addressing genetically modified organisms (GMOs). In the European Union, the European Court of Justice confirmed in 2018 that plants developed by novel genomic techniques for directed mutagenesis are regulated as GMOs. Thus, they have to undergo an ERA prior to deliberate release or being placed on the market. Recently, the European Food Safety Authority (EFSA) published two opinions on the relevance of the current EU ERA framework for GM plants obtained through novel genomic techniques (NGTs). Regarding GE plants, the opinions confirmed that the existing ERA framework is suitable in general and that the current ERA requirements need to be applied in a case specific manner. Since EFSA did not provide further guidance, this review addresses a couple of issues relevant for the case-specific assessment of GE plants. We discuss the suitability of general denominators of risk/safety and address characteristics of GE plants which require particular assessment approaches. We suggest integrating the following two sets of considerations into the ERA: considerations related to the traits developed by GE and considerations addressing the assessment of method-related unintended effects, e.g., due to off-target modifications. In conclusion, we recommend that further specific guidance for the ERA and monitoring should be developed to facilitate a focused assessment approach for GE plants.


2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


2018 ◽  
pp. 605-644
Author(s):  
D. R. Mehta ◽  
A. K. Nandha

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1790
Author(s):  
Georgii Dolgalev ◽  
Ekaterina Poverennaya

CRISPR-Cas-based genome editing is a revolutionary approach that has provided an unprecedented investigational power for the life sciences. Rapid and efficient, CRISPR-Cas technologies facilitate the generation of complex biological models and at the same time provide the necessary methods required to study these models in depth. The field of proteomics has already significantly benefited from leveraging the power of CRISPR-Cas technologies, however, many potential applications of these technologies in the context of proteomics remain unexplored. In this review, we intend to provide an introduction to the CRISPR-Cas technologies and demonstrate how they can be applied to solving proteome-centric questions. To achieve this goal, we begin with the description of the modern suite of CRISPR-Cas-based tools, focusing on the more mature CRISPR-Cas9 system. In the second part of this review, we highlight both established and potential applications of the CRISPR-Cas technologies to proteomics.


2021 ◽  
Author(s):  
Venera S. Kamburova ◽  
Ilkhom B. Salakhutdinov ◽  
Shukhrat E. Shermatov ◽  
Ibrokhim Y. Abdurakhmonov

The main task of plant breeding is creating of high-yield, resistant to biotic and abiotic stresses crop varieties with high product quality. The using of traditional breeding methods is limited by the duration of the new crop varieties creation with the required agronomic traits. This depends not only on the duration of growing season and reaching of mature stage of plants (especially the long-period growth plants, e.g. trees), as well as is associated with applying of multiple stages of crossing, selection and testing in breeding process. In addition, conventional methods of chemical and physical mutagenesis do not allow targeting effect to genome. However, the introduction of modern DNA-technology methods, such as genome editing, has opened in a new era in plant breeding. These methods allow to carry out precise and efficient targeted genome modifications, significantly reducing the time required to get plants with desirable features to create new crop varieties in perspective. This review provides the knowledge about application of genome editing methods to increase crop yields and product quality, as well as crop resistance to biotic and abiotic stresses. In addition, future prospects for integrating these technologies into crop breeding strategies are also discussed.


2018 ◽  
Vol 475 (11) ◽  
pp. 1955-1964 ◽  
Author(s):  
Ayman Eid ◽  
Sahar Alshareef ◽  
Magdy M. Mahfouz

The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 adaptive immunity system has been harnessed for genome editing applications across eukaryotic species, but major drawbacks, such as the inefficiency of precise base editing and off-target activities, remain. A catalytically inactive Cas9 variant (dead Cas9, dCas9) has been fused to diverse functional domains for targeting genetic and epigenetic modifications, including base editing, to specific DNA sequences. As base editing does not require the generation of double-strand breaks, dCas9 and Cas9 nickase have been used to target deaminase domains to edit specific loci. Adenine and cytidine deaminases convert their respective nucleotides into other DNA bases, thereby offering many possibilities for DNA editing. Such base-editing enzymes hold great promise for applications in basic biology, trait development in crops, and treatment of genetic diseases. Here, we discuss recent advances in precise gene editing using different platforms as well as their potential applications in basic biology and biotechnology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luisa Batalha ◽  
Francesco Foroni ◽  
Brian Joseph Jones

A pervasive opposition to genetically modified (GM) foods has developed from the notion that they pose a risk to human and environmental health. Other techniques for the genetic modification of plants, such as sexual crossing and mutagenesis breeding, have mostly remained unchallenged. This research aims to investigate public perception of plant breeding technologies. Specifically, sexual crossing, mutagenesis, transgenics (GM) and gene editing. It was expected that attitudes and intentions would be most positive and the perception of risk lowest for plant genetic modification through sexual crosses. Scores on these variables were expected to be similar between mutagenesis, GM and gene editing. It was also expected that attitudes, intentions and risk perception would change (becoming more positive) once participants learned about foods developed through these technologies. Participants reported their attitudes, intentions and risk perception at two points in time. At Time 2, they were presented with pictures of food items developed through sexual crossing, GM and mutagenesis. The results showed that mutagenesis stood out as the most negatively perceived technology, whereas genetic development via sexual crosses was generally perceived as positive. The results highlight the importance of messaging, framing in consumer attitudes.


Sign in / Sign up

Export Citation Format

Share Document