scholarly journals Speciation of P in Solid Organic Fertilisers from Digestate and Biowaste

Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2233
Author(s):  
Inge C. Regelink ◽  
Caleb E. Egene ◽  
Filip M. G. Tack ◽  
Erik Meers

Phosphorus (P) is a finite resource and its reuse in organic fertilisers made from biowaste and manure should therefore be encouraged. The composition of solid organic fertilisers (SOFs) depends on the type of feedstock and processing conditions, and this may affect P speciation and hence P availability. Phosphorus speciation was assessed in eighteen different SOFs produced from biowaste and digestate. Available P was determined in 10 mM CaCl2 extracts at a fixed pH of 5.5 and at a fixed total P concentration in the suspension. P was dominantly present as inorganic P (>80% of total P). There was a strong variation in the Fe content of the SOFs and hence in the fraction of P bound to reactive Fe/Al-oxides (PFe). The fraction of total P soluble at pH 5.5 correlated negatively with PFe pointing to fixation of P by metal salts added during processing, or by soil mineral particles in case garden waste was processed. Therefore, the use of iron salts in processing plants should be avoided. In addition, the presence of P in poorly soluble precipitates lowered the fraction of easily available P. Overall, this study shows that Pt alone is not a good indicator for the agronomic efficiency of SOFs due to large differences in P speciation among SOFs.

1975 ◽  
Vol 55 (2) ◽  
pp. 149-159 ◽  
Author(s):  
J. M. SADLER ◽  
J. W. B. STEWART

Granular monoammonium phosphate (500 μg P/g soil) was applied in the field to three soils of an Oxbow catena. Changes in P form during the ensuing 2½ yr were determined by total P and modified inorganic P fractionation analysis; an index of available P was obtained by NaHCO3 extraction. The original soils were very low in NH4Cl-soluble P and available P; inorganic P apparently existed as sparingly soluble minerals. After application, most of the fertilizer P remained in the Ap horizon. In the Calcareous and Orthic profiles after 2 mo, 52 and 67%, respectively, of applied P recovered as inorganic P remained in available forms, mainly as NH4Cl-P. Subsequently in the Calcareous profile, NH4Cl-P underwent conversion to NH4F-soluble forms, causing a further 70% reduction in P availability. In the Orthic profile, the only apparent change with time was a decline to 41% in P availability. Applied P transformation to H2SO4-P was minimal in both soils. In the Gleysol profile, only 31% of P in the inorganic reaction products, which consisted mainly of NH4F-P and NaOH-NaCl-P, remained as available P after 2 mo. However, no further reduction in P availability occurred with time. Results indicated that an appreciable portion of residual fertilizer P in Chernozemic soils may persist for years in readily available forms. Soil pH strongly influenced residual P form and availability.


2019 ◽  
Vol 35 (5) ◽  
pp. 203-212 ◽  
Author(s):  
Anderson Cesar Ramos Marques ◽  
Rogério Piccin ◽  
Tales Tiecher ◽  
Leandro Bittencourt de Oliveira ◽  
João Kaminski ◽  
...  

AbstractThe natural grasslands in South America have soils with low phosphorus (P) availability (1.0 to 7.5 mg kg−1), possibly altering the absorption and accumulation of P in grasses. We evaluated the chemical fractionation of P in the leaves of the most important grasses present in these grasslands to better understand the mechanisms involved in the storage of P. The grasses studied were Axonopus affinis and Paspalum notatum (fast tissue cycling and high nutrient demand) and Andropogon lateralis and Aristida laevis (slow tissue cycling and low nutrient demand). They were grown in pots filled with an Ultisol with two levels of P: control, and addition of 50 mg P kg–1. The main P fractions were the inorganic soluble (44%) and P in RNA (26%). Addition of P increased the total P concentration, following the order A. affinis (140%) > P. notatum (116%) > A. lateralis (81%) > A. laevis (21%). In conclusion, the species A. affinis and P. notatum responded to P fertilization with high variation and accumulating P in less-structural chemical forms, such as inorganic P. The species A. lateralis and A. laevis showed low variation in the concentration of P forms, with higher P concentrations in structural forms.


Soil Research ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 607 ◽  
Author(s):  
Xiang Li ◽  
Caixia Dong ◽  
Yiren Liu ◽  
Yanxia Liu ◽  
Qirong Shen ◽  
...  

A pot experiment was conducted using different ratios of triple superphosphate (TSP) to pig manure (PM) to determine the best ratio for combining inorganic and organic fertilisers to attain optimum crop yields, and investigate the mechanisms affecting P availability in a wheat (Triticum aestivum L.)–soybean (Glycine max L.) rotation in eastern China. The TSP/PM treatment ratios used were: T1, 0/0 as a control; T2, 100/0; T3, 90/10; T4, 80/20; T5, 70/30; T6, 0/100. All treatments except T1 received the same amount of P. Treatment T4 gave significant yield increases of 25.6% in 2008 and 16.8% in 2009 compared with T2. Regarding the various forms of organic P (Po) under different fertilisation treatments, the labile Po of treatment T4 was 60.0% higher than that of T2. The contents of moderately labile Po were in the order T6 > T5 = T4 > T3 > T2 > T1. The addition of pig manure decreased the contents of iron (Fe)-P and calcium-P and occluded-P more than the content of aluminium-P. Compared with the T2 treatment, soil inorganic P decreased by 5.3%, 12.1%, and 15.0% when the ratios of TSP/PM in fertiliser were T3, T4, and T5, respectively. Microbial biomass and phytase activity of treatment T4 were not significantly different from those of T5 and T6, but significantly increased compared with T2. When the amount of leachate was 50 mL, only 1.6%, 8.4%, and 9.8% of total 32P leached from the T1, T2, and T4 soils, respectively. Treatment T4 resulted in higher grain yield, increased labile Po and moderately labile Po, and decreased Fe-P and occluded-P, and promoted microbial biomass P and phytase activity, which were better outcomes for a wheat–soybean rotation. Fertilising soil with combined organic and inorganic P sources could lower P fixation and enhance P mobility.


2020 ◽  
Vol 14 ◽  
Author(s):  
Djalma Silva Pereira ◽  
Liovando Marciano Da Costa ◽  
Davi Lopes Do Carmo ◽  
Ana Caroline Teixeira Rocha

The total content of phosphorus (P) within soil does not reflect its availability for plants, the available form depending on the physical and chemical characteristics of the soil. The aim was to evaluate the availability of P, using Mehlich-1 and Mehlich-3 extractors, and to determine the different forms of inorganic P in different classes of soils. Samples from horizon A of five soil classes from the municipality of Lagoa Formosa, Minas Gerais, were used: Typical Dystrophic Litholytic Entisol (RLd), Typical Dystrophic Red Oxisol (LVd), Typical Dystrophic Tb Hapludox Inceptisol (CXbd), Typical Acriferic Red Oxisol (LVwf), and Typical Chernossolic Litholytic Entisol (RLm). The levels of available P, remaining P, and total P were determined. From the fractionation of inorganic P, it was determined: soluble P (“P-H2O”), P bonded to aluminum (P-Al), P bonded to iron (P-Fe), and P bonded to calcium (P-Ca). The Mehlich-1 and Mehlich-3 extractors had a high correlation coefficient, indicating that both methods could be used to extract available P from the soil. Mehlich-1 extracted more available P in the soil with a high calcium content (RLm). High levels of total P observed in LVwf and RLm were mainly due to the parent material of the soils. P-Fe and P-Al are the predominant inorganic P fractions in the most weathered (RLd, LVd, and LVwf) and acidic soils (Cxbd). In RLm, the inorganic P is predominantly P-Ca.


Soil Research ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 327 ◽  
Author(s):  
R. C. Dalal

Vertisols originally carrying brigalow vegetation (Acacia harpophylla F. Muell. ex Benth.) and cultivated for cereal cropping for up to 45 years were examined for trends in available phosphorus (P) [sodium bicarbonate extractable P (bicarb. P) and dilute acid extractable P (acid P)], organic P, inorganic P, and total P. The soils (0-0 · 1 m depth) in their virgin state contained 60 mg/kg of bicarb. P, 168 mg/kg of acid P, 239 mg/kg of organic P, and 330 mg/kg of inorganic P. All fractions of soil P declined following first-order decay with the period of cereal cropping; the rates of bicarb. P and acid P (available P) decline were 0 · 047 and 0 · 08/year. The organic P, inorganic P, and total P declined more slowly than available P; the respective rates were 0 · 026, 0 · 019, and 0 · 021/year. The rates of loss of total P and inorganic P were much higher from the clay-size fraction than the silt-size or sand-size fraction, with the t½ value of inorganic P in the sand-size fraction being almost 20 times greater than any other fraction. On the other hand, organic P loss from the clay-size fraction was much less; presumably, clay provides physical protection to soil organic matter and hence to organic P from decomposition. On average, bicarb. P and acid P declined at the rate of 1 · 3±0 · 3 and 4 · 6±1 · 4 mg P/kg soil · year. The declines in organic P and inorganic P were 3 · 0±0.4 and 4 · 1±1 · 2 mg P/kg soil · year, with a loss in total P of 7 · 2±1 · 3 mg P/kg soil · year. There was no significant shift in the ratio organic P: total P (38±7%) with the period of cultivation and cereal cropping. Organic P was closely correlated with organic C and total N in these soils. The mean amounts of P contained in the grain and the dry matter of each cereal crop from 1981 and 1984 were 7 · 6±1 · 8 and 8 · 3±2 · 4 kg P/ha, respectively. Thus, most of the soil total P loss could be accounted for by crop removal, of which organic P contributed about 40%. However, the continuous decline in available P, especially below 15 mg P/kg soil, warrants remedial measures to arrest the decline in the yields of crops grown on these Vertisols.


1982 ◽  
Vol 99 (1) ◽  
pp. 25-33 ◽  
Author(s):  
P. Loganathan ◽  
P. M. N. Dayaratne ◽  
R. T. Shanmuganathan

SUMMARYThe phosphorus status of 58 soil samples representing 15 soil series and four soil Orders (Ultisol, Entisol, Alfisol and Oxisol) in the major coconut-growing regions of Sri Lanka was evaluated by determining the available P extracted by the methods of Olsen, Bray & Kurtz No. 1, Bray & Kurtz No. 2 and NH4OAc (pH 4·8) and the various P forms. Total P in the soils ranged from 37 to 338 mg/kg with organic P and active P constituting only about 20 and 50% of the total P respectively. In general the sandy soils of the Entisols and Oxisols had lower total and organic P but higher active and available P than the rest. The relative abundance of the various inorganic P forms was generally in the decreasing order of inactive P, Fe-P, Al-P and Ca-P. Al-P and Ca-P were positively correlated with percentage sand and negatively correlated with percentage silt and percentage clay whereas total P and organic P had the opposite trend. Available P extracted by the four methods was very low in almost all soils except some of the sandy soils (Entisols) which had marginal to moderate P contents. They were positively correlated with Al-P, Ca-P, percentage sand and negatively correlated with percentages of silt, clay and organic carbon.Phosphorus concentrations (0·074–0·116%) in the 14th leaf of coconut at the soil sites were all lower than the critical leaf-P concentration (0·120%). Leaf-P correlations with Bray & Kurtz No. 2-P and NH40Ac-P were significant (P < 0·05) and with Al-P and Ca-P were close to significant.The study revealed that the coconut-growing soils of Sri Lanka were deficient in total as well as the active and available forms of P except perhaps some of the sandy soils of the Entisol. This was confirmed by coconut leaf P analysis.


1999 ◽  
Vol 39 (12) ◽  
pp. 63-67 ◽  
Author(s):  
B. L. Turner ◽  
P. M. Haygarth

Phosphorus (P) transfer from agricultural land to surface waters can contribute to eutrophication, excess algal growth and associated water quality problems. Grasslands have a high potential for P transfer, as they receive P inputs as mineral fertiliser and concentrates cycled through livestock manures. The transfer of P can occur through surface and subsurface pathways, although the capacity of most soils to fix inorganic P has meant that subsurface P transfer by leaching mechanisms has often been perceived as negligible. We investigated this using large-scale monolith lysimeters (135 cm deep, 80 cm diameter) to monitor leachate P under four grassland soil types. Leachate was collected during the 1997–98 drainage year and analysed for a range of P fractions. Mean concentrations of total P routinely exceeded 100 μg l−1 from all soil types and, therefore, exceeded P concentrations above which eutrophication and algal growth can occur. The majority of the leachate P was in algal-available Mo-reactive (inorganic) forms, although a large proportion occurred in unreactive (organic) forms. We suggest that subsurface transfer by leaching can represent a significant mechanism for agricultural P transfer from some soils and must be given greater consideration as a potential source of diffuse P pollution to surface waters.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1700
Author(s):  
Maria Consolación Milián-Sorribes ◽  
Ana Tomás-Vidal ◽  
David S. Peñaranda ◽  
Laura Carpintero ◽  
Juan S. Mesa ◽  
...  

This study was conducted to evaluate the apparent availability and P and N excretion in rainbow trout (Oncorhynchus mykiss) using different inorganic phosphorus sources. With this goal, fish (153 ± 14.1 g) fed four inorganic P sources were assayed: monoammonium phosphate (MAP, NH4H2PO4), monosodium/monocalcium phosphate (SCP-2%, AQphos+, NaH2PO4/Ca(H2PO4)2·H2O in proportion 12/88), monosodium/monocalcium phosphate (SCP-5%, NaH2PO4/Ca(H2PO4)2·H2O in proportion 30/70) and monocalcium phosphate (MCP, Ca(H2PO4)2·H2O). Phosphorus (P) digestibility, in diets that included MAP and SCP-2% as inorganic phosphorus sources, were significantly higher than for SCP-5% and MCP sources. In relation to the P excretion pattern, independent of the diet, a peak at 6 h after feeding was registered, but at different levels depending on inorganic P sources. Fish fed an MAP diet excreted a higher amount of dissolved P in comparison with the rest of the inorganic P sources, although the total P losses were lower in MAP and SCP-2% (33.02% and 28.13, respectively) than in SCP-5% and MCP sources (43.35% and 47.83, respectively). Nitrogen (N) excretion was also studied, and the fish fed an SCP-5% diet provided lower values (15.8%) than MAP (28.0%). When N total wastes were calculated, SCP-2% and SCP-5% showed the lowest values (31.54 and 28.25%, respectively). In conclusion, based on P and N digestibility and excretion, the SCP-2% diet showed the best results from a nutritional and environmental point of view.


1985 ◽  
Vol 65 (3) ◽  
pp. 467-473 ◽  
Author(s):  
V. K. BHATNAGAR ◽  
M. H. MILLER

A series of laboratory experiments was conducted to determine the mechanism(s) responsible for a previously reported observation that addition of liquid manure to soil increased the NaHCO3-extractable P (Ext-P) of large aggregates (> 2 mm) more than that of smaller aggregates whereas addition of an inorganic P solution did not. Application of liquid poultry manure increased the total P, Ext-P and total C concentrations in large aggregates (> 2 mm) much more (> 2.5 ×) than that in small aggregates (< 1 mm). Addition of inorganic P solution or of supernatant liquid from a centrifuged manure slurry increased the P content of the large aggregates only slightly (1.2 ×). A greater increase in Ext-P in large aggregates was observed even when the smaller aggregates were purposely layered on top of the larger ones prior to addition of the liquid manure. A similar but less pronounced effect of aggregate size on increase in P or C concentration was observed when different sized aggregates were left in contact with an effectively infinite source of liquid manure for 24 h. It is concluded that the larger aggregates absorbed more of the bulk manure slurry than smaller aggregates. A partial sealing of small aggregates by particulates is suggested as a possible mechanism. Key words: Carbon, phosphorus, liquid manure, soil aggregates


2013 ◽  
Vol 37 (3) ◽  
pp. 667-677 ◽  
Author(s):  
Irio Fernando de Freitas ◽  
Roberto Ferreira Novais ◽  
Ecila Mercês de Albuquerque Villani ◽  
Sarah Vieira Novais

Despite the large number of studies addressing the quantification of phosphorus (P) availability by different extraction methods, many questions remain unanswered. The aim of this paper was to compare the effectiveness of the extractors Mehlich-1, Anionic Resin (AR) and Mixed Resin (MR), to determine the availability of P under different experimental conditions. The laboratory study was arranged in randomized blocks in a [(3 x 3 x 2) + 3] x 4 factorial design, with four replications, testing the response of three soils with different texture: a very clayey Red Latosol (LV), a sandy clay loam Red Yellow Latosol (LVA), and a sandy loam Yellow Latosol (LA), to three sources (triple superphosphate, reactive phosphate rock from Gafsa-Tunisia; and natural phosphate from Araxá-Minas Gerais) at two P rates (75 and 150 mg dm-3), plus three control treatments (each soil without P application) after four contact periods (15, 30, 60, and 120 days) of the P sources with soil. The soil acidity of LV and LVA was adjusted by raising base saturation to 60 % with the application of CaCO3 and MgCO3 at a 4:1 molar ratio (LA required no correction). These samples were maintained at field moisture capacity for 30 days. After the contact periods, the samples were collected to quantify the available P concentrations by the three extractants. In general, all three indicated that the available P-content in soils was reduced after longer contact periods with the P sources. Of the three sources, this reduction was most pronounced for triple superphosphate, intermediate for reactive phosphate, while Araxá phosphate was least sensitive to the effect of time. It was observed that AR extracted lower P levels from all three soils when the sources were phosphate rocks, while MR extracted values close to Mehlich-1 in LV (clay) and LVA (medium texture) for reactive phosphate. For Araxá phosphate, much higher P values were determined by Mehlich-1 than by the resins, because of the acidity of the extractor. For triple superphosphate, both resins extracted higher P levels than Mehlich-1, due to the consumption of this extractor, particularly when used for LV and LVA.


Sign in / Sign up

Export Citation Format

Share Document