scholarly journals Spatiotemporal Assessment and Meteorological Determinants of Atmospheric Drought in Agricultural Areas of East-Central Poland

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2405
Author(s):  
Krzysztof Bartoszek ◽  
Alicja Baranowska ◽  
Łukasz Kukla ◽  
Barbara Skowera ◽  
Alicja Węgrzyn

Atmospheric drought is an extremely important issue on a global, regional and local scale, especially in the context of climate change. The aim of the study was to assess the spatiotemporal variation of atmospheric (meteorological) drought in agricultural areas of east-central Poland, represented by the Lublin Voivodeship (Lublin region) in 1971–2015. Average monthly air temperatures and monthly precipitation totals recorded over the 45-year period at 25 weather stations were used in the study. The assessment of spatiotemporal variation in atmospheric drought in the study area was based on calculations of the aridity index. The analysis showed an increase in the severity of atmospheric drought in the Lublin region, with intensification of this phenomenon in the last two decades, especially in the warmer half of the year (April, June–August). The main cause of drought in the Lublin region was identified as a statistically significant increase in air temperature (on average, from 0.4 °C to 0.7 °C/10 years in April, July and August, and from 0.2 °C to 0.5 °C/10 years in June) together with the absence of changes in precipitation in the warmer half of the year. This may be linked to some increase in the frequency of high-pressure circulation types, both non-directional and advection from the south. Due to the worsening problem of drought in Poland in recent years, especially in agriculture, there is a need for further research on this subject and for solutions aimed at optimizing agricultural use of the productive environment.

2014 ◽  
Vol 22 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Arkadiusz Bartczak ◽  
Ryszard Glazik ◽  
Sebastian Tyszkowski

Abstract The article presents the results of research into the transformation of series of hydro-meteorological data for determining dry periods with the Standardised Precipitation Index (SPI) and the Standardised Discharge Index (SDI). Time series from eight precipitation stations and five series of river discharge data in Eastern Kujawy (central Poland) were analysed for 1951–2010. The frequency distribution of the series for their convergence with the normal distribution was tested with the Shapiro–Wilk test and homogeneity with the Bartlett's test. The transformation of the series was done with the Box–Cox technique, which made it possible to homogenise the series in terms of variance. In Poland, the technique has never been used to determine the SPI. After the transformation the distributions of virtually all series complied with the normal distribution and were homogeneous. Moreover, a statistically significant correlation between the δ transformation parameter and the skewness of the series of monthly precipitation was observed. It was similar for the series of mean monthly discharges in the winter half-year and the hydrological year. The analysis indicates an alternate occurrence of dry and wet periods both in case of precipitation and run-offs. Drought periods coincided with low flow periods. Thus, the fluctuations tend to affect the development of agriculture more than long-term ones.


2017 ◽  
Vol 52 (3) ◽  
pp. 288-292 ◽  
Author(s):  
Artur Golawski ◽  
Izabela Hajdamowicz ◽  
Sylwia Golawska

2018 ◽  
Vol 22 (9) ◽  
pp. 5041-5056 ◽  
Author(s):  
José Miguel Delgado ◽  
Sebastian Voss ◽  
Gerd Bürger ◽  
Klaus Vormoor ◽  
Aline Murawski ◽  
...  

Abstract. A set of seasonal drought forecast models was assessed and verified for the Jaguaribe River in semiarid northeastern Brazil. Meteorological seasonal forecasts were provided by the operational forecasting system used at FUNCEME (Ceará's research foundation for meteorology) and by the European Centre for Medium-Range Weather Forecasts (ECMWF). Three downscaling approaches (empirical quantile mapping, extended downscaling and weather pattern classification) were tested and combined with the models in hindcast mode for the period 1981 to 2014. The forecast issue time was January and the forecast period was January to June. Hydrological drought indices were obtained by fitting a multivariate linear regression to observations. In short, it was possible to obtain forecasts for (a) monthly precipitation, (b) meteorological drought indices, and (c) hydrological drought indices. The skill of the forecasting systems was evaluated with regard to root mean square error (RMSE), the Brier skill score (BSS) and the relative operating characteristic skill score (ROCSS). The tested forecasting products showed similar performance in the analyzed metrics. Forecasts of monthly precipitation had little or no skill considering RMSE and mostly no skill with BSS. A similar picture was seen when forecasting meteorological drought indices: low skill regarding RMSE and BSS and significant skill when discriminating hit rate and false alarm rate given by the ROCSS (forecasting drought events of, e.g., SPEI1 showed a ROCSS of around 0.5). Regarding the temporal variation of the forecast skill of the meteorological indices, it was greatest for April, when compared to the remaining months of the rainy season, while the skill of reservoir volume forecasts decreased with lead time. This work showed that a multi-model ensemble can forecast drought events of timescales relevant to water managers in northeastern Brazil with skill. But no or little skill could be found in the forecasts of monthly precipitation or drought indices of lower scales, like SPI1. Both this work and those here revisited showed that major steps forward are needed in forecasting the rainy season in northeastern Brazil.


Bird Study ◽  
2016 ◽  
Vol 63 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Artur Goławski ◽  
Zbigniew Kasprzykowski ◽  
Mateusz Ledwoń ◽  
Emilia Mróz ◽  
Federico Morelli

2019 ◽  
Vol 58 (4) ◽  
pp. 645-661 ◽  
Author(s):  
Vahid Rahimpour Golroudbary ◽  
Yijian Zeng ◽  
Chris M. Mannaerts ◽  
Zhongbo Su

AbstractKnowledge of the response of extreme precipitation to urbanization is essential to ensure societal preparedness for the extreme events caused by climate change. To quantify this response, this study scales extreme precipitation according to temperature using the statistical quantile regression and binning methods for 231 rain gauges during the period of 1985–2014. The positive 3%–7% scaling rates were found at most stations. The nonstationary return levels of extreme precipitation are investigated using monthly blocks of the maximum daily precipitation, considering the dependency of precipitation on the dewpoint, atmospheric air temperatures, and the North Atlantic Oscillation (NAO) index. Consideration of Coordination of Information on the Environment (CORINE) land-cover types upwind of the stations in different directions classifies stations as urban and nonurban. The return levels for the maximum daily precipitation are greater over urban stations than those over nonurban stations especially after the spring months. This discrepancy was found by 5%–7% larger values in August for all of the classified station types. Analysis of the intensity–duration–frequency curves for urban and nonurban precipitation in August reveals that the assumption of stationarity leads to the underestimation of precipitation extremes due to the sensitivity of extreme precipitation to the nonstationary condition. The study concludes that nonstationary models should be used to estimate the return levels of extreme precipitation by considering the probable covariates such as the dewpoint and atmospheric air temperatures. In addition to the external forces, such as large-scale weather modes, circulation types, and temperature changes that drive extreme precipitation, urbanization could impact extreme precipitation in the Netherlands, particularly for short-duration events.


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 161 ◽  
Author(s):  
Konstantinos Soulis ◽  
Dionissios Kalivas ◽  
Costas Apostolopoulos

The Less Favored Areas (LFAs) scheme has existed in various forms since 1975 and it is a broad mechanism supporting rural development in agricultural areas with natural constraints (ANC). Within the programme period 2014–2020, the European Commission developed a common set of biophysical criteria (soil, climate, and terrain) to meet the requirement for a robust and harmonized approach of delimiting ANC throughout the EU Member States. Soil and terrain criteria can be derived directly from soil maps using geospatial analysis techniques based on the provided guidelines. However, the assessment of climatic criteria can be challenging especially in regions characterized by increased spatial variability and data scarcity. In this paper, the assessment of the dryness climatic criterion in a data-scarce region (Greece) as well as the challenges, limitations, and solutions are presented. Daily data-series from 140 meteorological stations for a 30-year reference period were analyzed and the spatial distribution of the precipitation and the potential evapotranspiration for each year were estimated in order to make the final assessment of the dryness criterion. Climate variability and the presence of trends were investigated as well. The obtained results indicated that most of the utilized agricultural area is affected by dryness due to a combination of low precipitation and high evapotranspiration rates. The extreme spatial variability especially in precipitation was also highlighted. An important temporal variability was observed as well, including indications of decreasing trends in precipitation and aridity index. Climate variability and possible trends should be investigated in more detail using longer time series in order to evaluate their impact in agricultural production.


2020 ◽  
pp. 2150007
Author(s):  
Samuel Toluwalope Ogunjo

Tropical countries, like Nigeria, depend on rainfall for agriculture, power generation, transportation and other economic activities. Drought will hinder the performance of these activities, hence, it poses a significant threat to the economy. Understanding fluctuations and structures in droughts will help in forecasting, planning and mitigating its impact on livelihoods. In this study, the multifractal properties of drought at four temporal scales were investigated over different locations across Nigeria. Drought was computed using the standardized precipitation index from monthly precipitation data from 1980 to 2010. Using multifractal detrended fluctuation analysis, meteorological drought was found to have multifractal properties at 1-, 6-, 12- and 24-month temporal scale. The generalized Hurst exponent of drought at different time-scale showed dependence on scaling exponent. Long-range correlations were found to be main source of multifractality at all temporal scales. The multifractal strength increases with increasing temporal scale except for a few locations. The range of spectrum width were found to be 0.306–0.464 and 0.596–0.993 at 1- and 24-month temporal scale, respectively. No significant trend was found in the degree of multifractality across different climatic zones of Nigeria.


2019 ◽  
Vol 11 (21) ◽  
pp. 5897 ◽  
Author(s):  
Acharya ◽  
Biradar ◽  
Louhaichi ◽  
Ghosh ◽  
Hassan ◽  
...  

Climate change poses a significant threat to agroecosystems, especially in the dry areas, characterized by abrupt precipitation pattern and frequent drought events. Ideal crops, tolerant to these events, such as cactus, can perform well under such changing climatic conditions. This study spatially maps land suitability for cactus (Opuntia ficus-indica) cultivation in India using the analytical hierarchical process (AHP). Nine essential growth factors that include the climate and edaphic components were considered for the period 2000 to 2007. About 32% of the total geographic area of the country is in the high to moderate suitable category. Remaining 46% falls under the marginally suitable and 22% under the low to very low suitable category. The suitability analysis, based on the precipitation anomaly (2008–2017), suggests a high probability of cactus growth in the western and east-central part of India. The relationship with aridity index shows a decreasing rate of suitability with the increase of aridity in the western and east-central provinces (β~−1 to −2). We conclude that integrating cactus into dryland farming systems and rangelands under changing climate can be one plausible solution to build resilient agro-ecosystems that provide food and fodder while enhancing the availability of ecosystem services.


2015 ◽  
Vol 29 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Elżbieta Radzka ◽  
Katarzyna Rymuza

Abstract The work is based on meteorological data recorded by nine stations of the Institute of Meteorology and Water Management located in east-central Poland from 1971 to 2005. The region encompasses the North Podlasian Lowland and the South Podlasian Lowland. Average values of selected agroclimate indicators for the growing season were determined. Moreover, principal component analysis was conducted to indicate elements that exerted the greatest influence on the agroclimate. Also, cluster analysis was carried out to select stations with similar agroclimate. Ward method was used for clustering and the Euclidean distance was applied. Principal component analysis revealed that the agroclimate of east-central Poland was predominantly affected by climatic water balance, number of days of active plant growth, length of the farming period, and the average air temperature during the growing season (Apr-Sept). Based on the analysis, the region of east-central Poland was divided into two groups (areas) with different agroclimatic conditions. The first area comprized the following stations: Szepietowo and Białowieża located in the North Podlasian Lowland and Biała Podlaska situated in the northern part of the South Podlasian Lowland. This area was characterized by shorter farming periods and a lower average air temperature during the growing season. The other group included the remaining stations located in the western part of both the Lowlands which was warmer and where greater water deficits were recorded.


Author(s):  
Andrzej Araźny ◽  
Arkadiusz Bartczak ◽  
Rafał Maszewski ◽  
Michał Krzemiński

AbstractThis work presents the influence of atmospheric circulation on the occurrence of dry and wet periods in the central Polish region of Kujawy. The material on which the authors relied encompassed monthly totals of precipitation obtained from 10 weather stations in the period 1954–2018. Both dry and wet periods have been identified on the basis of monthly values of the Standardised Precipitation Index (SPI). Additionally, the calendar of circulation types over Central Poland was used to determine the atmospheric circulation indices: western (W), southern (S) and cyclonicity (C). The analyses have indicated that the region concerned experiences low precipitation totals in comparison with the rest of Poland. According to the circulation indices W, S and C, for Central Poland, the air mass advection from the West prevails over that from the East. Moreover, a slightly more frequent inflow of air from the South than from the North has been observed. The frequency of anticyclonic situations is higher than that of the cyclonic types in this part of Europe. Drought spells occurred in the study area at a clear dominance of anticyclonic circulation, with the inflow of air mostly from the North and with increased westerly circulation. On the other hand, the occurrence of wet periods was mainly influenced by cyclonic circulation during the advection of the masses from the South and West. Dry and wet periods accounted for 28% and 27% of the study period, respectively.


Sign in / Sign up

Export Citation Format

Share Document