scholarly journals Multi-Factor Diagnostic and Recommendation System for Boron in Neutral and Acidic Soils

Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 410 ◽  
Author(s):  
Richardly Lenz Clove Dupré ◽  
Lotfi Khiari ◽  
Jacques Gallichand ◽  
Claude Alla Joseph

Despite its inconveniences, the most recognized method to extract boron from soils is that of hot water extraction (BHW), which is used for diagnostics and recommendations. However, the Mehlich-3 (M3) method is widely used to extract and diagnose several elements at once (P, K, Ca, Mg, Al, B, Cu, Zn, Fe, and Mn) and is well adapted to routine analyses. The objective of our study was to develop a soil diagnostic and recommendation system for boron as a function of measured BM3 (and other interacting elements), crop type, and spreading methods. This system is based on three databases from either the international literature or the chemical characterization of acidic-to-neutral soils typical from Québec (Canada). The first database came from the characterization of 365 samples typical of Québec soils; it has been used to predict, by the AutoML (Automatic Machine Learnig) supervised learning algorithm, BM3 as a function of a set of parameters from the following: BHW, pHW, organic carbon (OC), CaM3, KM3, and MgM3. Depending on the parameters used, the R2 between the measured and observed BM3 varied from 0.36 to 0.99. This database allowed us to define two classifications for soil boron diagnostics and fertility evaluation. The Cate–Nelson analysis for these two models allowed us to define three boron fertility classes: Low, medium and high; that is 0.00–0.23, 0.23–0.58, and 0.58–3.70 mg B kg−1, respectively, for BHW, and 0.00–0.65, 0.65–1.03, and 1.03–12.70 mg B kg−1, respectively, for BM3. The third database was extracted from 130 yield responses to increasing levels of boron; it was used to define a recommendation model for boron, based on AutoML, as a function of BM3, pHW, the crop boron requirement (medium, high), and the type of spreading (broadcast, sidedress, foliar spraying). This model resulted in an R2 of 0.63.

2020 ◽  
Vol 146 ◽  
pp. 431-443 ◽  
Author(s):  
Isabela Pereira Dias ◽  
Shayla Fernanda Barbieri ◽  
Damian Estuardo López Fetzer ◽  
Marcos Lúcio Corazza ◽  
Joana Léa Meira Silveira

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4443
Author(s):  
Jiangyan Huo ◽  
Min Lei ◽  
Feifei Li ◽  
Jinjun Hou ◽  
Zijia Zhang ◽  
...  

A novel homogeneous polysaccharide named GEP-1 was isolated and purified from Gastrodia elata (G. elata) by hot-water extraction, ethanol precipitation, and membrane separator. GEP-1, which has a molecular weight of 20.1 kDa, contains a polysaccharide framework comprised of only glucose. Methylation and NMR analysis showed that GEP-1 contained 1,3,6-linked-α-Glcp, 1,4-linked-α-Glcp, 1,4-linked-β-Glcp and 1,4,6-linked-α-Glcp. Interestingly, GEP-1 contained citric acid and repeating p-hydroxybenzyl alcohol as one branch. Furthermore, a bioactivity test showed that GEP-1 could significantly promote the growth of Akkermansia muciniphila (A. muciniphila) and Lacticaseibacillus paracasei (L.paracasei) strains. These results implied that GEP-1 might be useful for human by modulating gut microbiota.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (1) ◽  
pp. 19-26 ◽  
Author(s):  
BILJANA M. BUJANOVIC ◽  
MANGESH J. GOUNDALKAR ◽  
THOMAS E. AMIDON

In conventional pulping technologies, lignin is used mainly as a low-cost source of energy. Small quantities of industrially produced lignin are used for the production of chemicals and materials. Biorefinery technologies are emerging that have an ultimate goal of replacing fossil sources for the production of fuels and other products. To achieve this goal effectively, biorefinery technologies must take advantage of lignin as the most abundant natural aromatic polymer and use it to add higher-value products to product portfolios. Lignin has the potential to be used in making a broad range of high-quality products, including carbon fibers, thermoplastics, and oxygenated aromatic compounds. Existing processes focus primarily on the quality of cellulose and result in a severely modified and contaminated lignin of relatively low value. Lignin produced in more flexible biorefinery operations is more uniform and less contaminated than currently available industrial lignins, opening the door for broader applications of lignin and lignin products. The results of isolation and characterization of lignin dissolved during hot-water extraction and some potential applications of this lignin are discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Joana M. Ferraz ◽  
Cláudio H. S. Del Menezzi ◽  
Mario R. Souza ◽  
Esmeralda Y. A. Okino ◽  
Sabrina A. Martins

The objectives of the present work were to evaluate the chemical compatibility between coir (Cocos nuciferaL.) and cement and to study treatment methods to improve this compatibility. In the inhibition test, cement hydration temperature evolution was measured in the absence and presence of untreated and treated coir fibres (cold water, hot water and NaOH), besides the addition of 4% of CaCl2. The chemical characterization of untreated and treated coir fibres was done by determining the content of extractives, lignin, and holocellulose. The inhibition test graded the untreated fibre as “extreme inhibition,” ratifying the need to provide it a treatment. Treatments done on coir fibres affected positively the compatibility between cement and fibre, reducing the inhibition. The treatments reduced the lignin coir fibres’ and extractives proportion, whose variation was significantly correlated with the reduction of the inhibitory index. These results indicate a possibility for future incorporation of these fibres into the production of mineral composites.


Author(s):  
Inês Ribeiro Machado ◽  
Keila Rêgo Mendes ◽  
Adriano Rodrigues De Paula ◽  
Michelly Rios Arévalo ◽  
Amanda Sousa Silva ◽  
...  

Dengue cases have grown significantly in Brazil in recent years. Studies with plant extracts show the insecticidal potential of bioactive substances that become candidates for future commercial products. This work evaluated the larvicidal effect of essential oil, without hydrolysis of Cyperus articulatus var. nodosus against the third and fourth wide stage of Aedes aegypti, which reduces larvae survival by as much as the 3th and 4th instar of Ae. aegypti. A chemical characterization of the hydrogen skeletons was performed by the GC-MS, revealing verbenone (%), trans-sabinol (%) and mirtenol (%) as major compounds. 



Sign in / Sign up

Export Citation Format

Share Document