scholarly journals Changes in Metabolites from Bovine Milk with β-Casein Variants Revealed by Metabolomics

Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 954
Author(s):  
Zhongwang Lv ◽  
Hui Liu ◽  
Yongxin Yang ◽  
Dengpan Bu ◽  
Changjiang Zang ◽  
...  

β-casein is a primary protein in milk, and its variants have been associated with changes in the protein content of bovine milk. However, there has been little research focused on the effects of β-casein variants on milk metabolites. In the present study, dairy cows producing milk with β-casein variant A1/A1 (A1), A2/A2 (A2), and their heterozygote A1/A2 (A12) were screened by a high-resolution melting method. Individual milk samples were then collected from each of the cows, and the milk metabolites were separated and analyzed using nuclear magnetic resonance spectroscopy- and liquid-chromatography mass spectrometry-based metabolomics techniques. Differences in metabolites among the variant groups were evaluated by multivariate statistical analysis. The relative abundances of methionine, proline, and α-lactose were the highest in β-casein variant A2 milk, whereas choline, glycine, citric acid, and cyclic adenosine monophosphate (cAMP) showed the highest abundances in variant A1 milk. Metabolic pathways analysis indicated that the differential metabolites between variants A1 and A2 were involved in pantothenate and coenzyme A biosynthesis, butanoate metabolism, and valine, leucine, and isoleucine biosynthesis. Our results reveal the differences in milk metabolites among the β-casein variants A1, A2, and the heterozygote. These findings, thus, provide novel insights into the effects of β-casein variants on milk metabolites, facilitating further research into the mechanism of the biosynthesis of milk components in the mammary gland and the potential physiological function of milk associated with β-casein variants.

2019 ◽  
Author(s):  
Bella Grigorenko ◽  
Igor Polyakov ◽  
Alexander Nemukhin

<p>We report a mechanism of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) conversion by the mammalian type V adenylyl cyclase revealed in molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations. We characterize a set of computationally derived enzyme-substrate (ES) structures showing an important role of coordination shells of magnesium ions in the solvent accessible active site. Several stable six-fold coordination shells of Mg<sub>A</sub><sup>2+ </sup>are observed in MD simulations of ES complexes. In the lowest energy ES conformation, the coordination shell of Mg<sub>A</sub><sup>2+ </sup>does not include the O<sub>δ1</sub> atom of the conserved Asp440 residue. Starting from this conformation, a one-step reaction mechanism is characterized which includes proton transfer from the ribose O<sup>3'</sup>H<sup>3' </sup>group in ATP to Asp440 via a shuttling water molecule and P<sup>A</sup>-O<sup>3A</sup> bond cleavage and O<sup>3'</sup>-P<sup>A</sup> bond formation. The energy profile of this route is consistent with the observed reaction kinetics. In a higher energy ES conformation, Mg<sub>A</sub><sup>2+</sup> is bound to the O<sub>δ1</sub>(Asp440) atom as suggested in the relevant crystal structure of the protein with a substrate analog. The computed energy profile initiated by this ES is characterized by higher energy expenses to complete the reaction. Consistently with experimental data, we show that the Asp440Ala mutant of the enzyme should exhibit a reduced but retained activity. All considered reaction pathways include proton wires from the O<sup>3'</sup>H<sup>3' </sup>group via shuttling water molecules. </p>


2019 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Chen Lei ◽  
Pan Xiang ◽  
Shen Yonggang ◽  
Song Kai ◽  
Zhong Xingguo ◽  
...  

The aim of this study was to determine whether polydatin, a glucoside of resveratrol isolated from the root of Polygonum cuspidatum, warranted development as a potential therapeutic for ameliorating the pain originating from gallbladder spasm disorders and the underlying mechanisms. Guinea pig gallbladder smooth muscles were treated with polydatin and specific inhibitors to explore the mechanisms underpinning polydatin-induced relaxation of carbachol-precontracted guinea pig gallbladder. Our results shown that polydatin relaxed carbachol-induced contraction in a dose-dependent manner through the nitric oxide/cyclic guanosine monophosphate/protein kinase G and the cyclic adenosine monophosphate/protein kinase A signaling pathways as well as the myosin light chain kinase and potassium channels. Our findings suggested that there was value in further exploring the potential therapeutic use of polydatin in gallbladder spasm disorders.


Author(s):  
Direnç Özlem Aksoy ◽  
Alpay Alkan

Background: Neurometabolic diseases are a group of diseases secondary to disorders in different metabolic pathways, which lead to white and/or gray matter of the brain involvement. </P><P> Discussion: Neurometabolic disorders are divided in two groups as dysmyelinating and demyelinating diseases. Because of wide spectrum of these disorders, there are many different classifications of neurometabolic diseases. We used the classification according to brain involvement areas. In radiological evaluation, MRI provides useful information for these disseases. Conclusion: Magnetic Resonance Spectroscopy (MRS) provides additional metabolic information for diagnosis and follow ups in childhood with neurometabolic diseases.


2010 ◽  
Vol 18 (4) ◽  
pp. 6-8
Author(s):  
Stephen W. Carmichael

Some of the receptors on the surface of cardiac muscle cells (cardiomyocytes) mediate the response of these cells to catecholamines by causing the production of the common second messenger cyclic adenosine monophosphate (cAMP). An example of such receptors are the β1- and β2-adrenergic receptors (βARs) that are heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors. Selective stimulation of these two receptor subtypes leads to distinct physiological and pathophysiological responses, but their precise location on the surface of cardiomyocytes has not been correlated with these responses. In an ingenious combination of techniques, Viacheslav Nikolaev, Alexey Moshkov, Alexander Lyon, Michele Miragoli, Pavel Novak, Helen Paur, Martin Lohse, Yuri Korchev, Sian Harding, and Julia Gorelik have mapped the function of these receptors for the first time.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3314
Author(s):  
Tomasz Kowalczyk ◽  
Joanna Kisluk ◽  
Karolina Pietrowska ◽  
Joanna Godzien ◽  
Miroslaw Kozlowski ◽  
...  

Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis, namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids, glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, especially in the early stage of cancer. Moreover, the presented results also indicated the activity of new metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in the early stage of NSCLC may reveal new prognostic and diagnostic targets.


Sign in / Sign up

Export Citation Format

Share Document