scholarly journals In Vitro Antibacterial Potential of Salix babylonica Extract against Bacteria that Affect Oncorhynchus mykiss and Oreochromis spp.

Animals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1340
Author(s):  
Lenin Rangel-López ◽  
Adrian Zaragoza-Bastida ◽  
Benjamín Valladares-Carranza ◽  
Armando Peláez-Acero ◽  
Carolina G. Sosa-Gutiérrez ◽  
...  

Aquaculture development is limited by bacteria associated with several diseases; antibiotics are used for the treatment of these affections, but bacteria have developed resistance to these drugs. It is important to develop effective treatments that allow the production of antibiotic-free food. The aim of the present study is to evaluate the in vitro antibacterial effects of Salix babylonica hydro-alcoholic extract (SbHE) against Aeromonas hydrophila, Listonella anguillarum, Edwarsiella tarda, and Streptococcus iniae, bacteria that affect Oncorhynchus mykiss and Oreochromis spp. production. SbHE was obtained through the maceration technique. Reference strains were used and their sensitivity to antibiotics was determined. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of SbHE were determined. Results showed that three of four evaluated bacteria were multidrug resistant, except S. iniae. SbHE showed antibacterial activity against all bacteria. Results indicate an MIC of 1.56 to 25 mg/mL and an MBC of 3.12 to 100 mg/mL. The greatest inhibitory activity occurred against L. anguillarum obtaining a MIC of 1.56 mg/mL and an MBC of 3.12 mg/mL. Results indicate that SbHE has bactericidal activity against A. hydrophila, L.anguilalurm, and S. iniae as well as bacteriostatic activity against E. tarda and could be an alternative treatment against these bacteria.

2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Susanne Jacobsson ◽  
Susanne Paukner ◽  
Daniel Golparian ◽  
Jörgen S. Jensen ◽  
Magnus Unemo

ABSTRACT We evaluated the activity of the novel semisynthetic pleuromutilin lefamulin, inhibiting protein synthesis and growth, and the effect of efflux pump inactivation on clinical gonococcal isolates and reference strains (n = 251), including numerous multidrug-resistant and extensively drug-resistant isolates. Lefamulin showed potent activity against all gonococcal isolates, and no significant cross-resistance to other antimicrobials was identified. Further studies of lefamulin are warranted, including in vitro selection and mechanisms of resistance, pharmacokinetics/pharmacodynamics, optimal dosing, and performance in randomized controlled trials.


Author(s):  
Yi-Hsuan Lee ◽  
Chao-Min Wang ◽  
Po-Yu Liu ◽  
Ching-Chang Cheng ◽  
Zong-Yen Wu ◽  
...  

Essential oils from the dried spikes ofNepeta tenuifolia(Benth) are obtained by steam distillation. Pulegone was identified as the main component in the spikes ofN. tenuifoliathrough analysis, with greater than 85% purity obtained in this study. The essential oils are extremely active against all Gram-positive and some Gram-negative reference bacteria, particularlySalmonella enterica,Citrobacter freundii, andEscherichia coli. The minimum inhibitory concentration was found to be between 0.08 and 0.78% (againstS. enterica), 0.39 and 0.78% (againstC. freundii), and 0.097 and 0.39% (againstE. coli), whereas the minimum bactericidal concentration varied in range from 0.097% to 1.04%. In general, the essential oils show a strong inhibitory action against all tested reference strains and clinical isolates. However, the antibacterial activity of EOs against bothPseudomonas aeruginosareference strains and clinical isolates was relatively lower than other Gram-negative pathogens. The essential oils ofN. tenuifoliaalso displayed bactericidal activities (MBC/MIC < 4) in this study. These findings reflect the bactericidal activity of the essential oils against a wide range of multidrug-resistant clinical pathogens in an in vitro study. In addition, we propose the fragmentation pathways of pulegone and its derivatives by LC-ESI-MS/MS in this study.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Johanne Blais ◽  
Sara Lopez ◽  
Cindy Li ◽  
Alexey Ruzin ◽  
Srijan Ranjitkar ◽  
...  

ABSTRACTLYS228 is a novel monobactam with potent activity againstEnterobacteriaceae. LYS228 is stable to metallo-β-lactamases (MBLs) and serine carbapenemases, includingKlebsiella pneumoniaecarbapenemases (KPCs), resulting in potency against the majority of extended-spectrum β-lactamase (ESBL)-producing and carbapenem-resistantEnterobacteriaceaestrains tested. Overall, LYS228 demonstrated potent activity against 271Enterobacteriaceaestrains, including multidrug-resistant isolates. Based on MIC90values, LYS228 (MIC90, 1 μg/ml) was ≥32-fold more active against those strains than were aztreonam, ceftazidime, ceftazidime-avibactam, cefepime, and meropenem. The tigecycline MIC90was 4 μg/ml against the strains tested. AgainstEnterobacteriaceaeisolates expressing ESBLs (n= 37) or displaying carbapenem resistance (n= 77), LYS228 had MIC90values of 1 and 4 μg/ml, respectively. LYS228 exhibited potent bactericidal activity, as indicated by low minimal bactericidal concentration (MBC) to MIC ratios (MBC/MIC ratios of ≤4) against 97.4% of theEnterobacteriaceaestrains tested (264/271 strains). In time-kill studies, LYS228 consistently achieved reductions in CFU per milliliter of 3 log10units (≥99.9% killing) at concentrations ≥4× MIC forEscherichia coliandK. pneumoniaereference strains, as well as isolates encoding TEM-1, SHV-1, CTX-M-14, CTX-M-15, KPC-2, KPC-3, and NDM-1 β-lactamases.


2021 ◽  
Vol 11 (2) ◽  
pp. 646-651
Author(s):  
Patricia Nascente ◽  
PEDRO RASSIER DOS SANTOS ◽  
HELENICE GONZALEZ DE LIMA ◽  
SILVIA DE OLIVEIRA HUBNER ◽  
PATRICIA DA SILVA NASCENTE

This work aims to verify the in vitro action of antiseptics used in the pre- and post-dipping against multidrug-resistant bacteria from bovine mastitis. Antiseptic solutions in the concentration of use of iodine, chlorhexidine and sodium hypochlorite were tested against Staphylococcus aureus (n=12), Staphylococcus sciuri (n=1), Staphylococcus lentus (n=1), Streptococcus sp. (n=1), Enterococcus faecalis (n=1), Enterococcus casseliflavus (n=1), Kocuria kristinae (n=2), Kocuria varians (n=1). Was verified the Minimal Inhibitory and Bactericidal Concentration. The cytotoxicity test complemented the work. It was found that the Minimal Inhibitory Concentration and Minimal Bactericidal Concentration of the iodine, sodium hypochlorite and chlorhexidine was effective in the values recommended for use, however the presence of organic material reduced the activity of the tested products. Chlorhexidine showed higher efficiency of the other disinfectants.


2011 ◽  
Vol 55 (4) ◽  
pp. 1671-1676 ◽  
Author(s):  
Daniela Jabés ◽  
Cristina Brunati ◽  
GianPaolo Candiani ◽  
Simona Riva ◽  
Gabriella Romanó ◽  
...  

ABSTRACTNAI-107 is a novel lantibiotic active against Gram-positive bacteria, including methicillin-resistantStaphylococcus aureus(MRSA), glycopeptide-intermediateS. aureus(GISA), and vancomycin-resistant enterococci (VRE). The aim of this study was to evaluate thein vivoefficacy of NAI-107 in animal models of severe infection. In acute lethal infections induced with a penicillin-intermediateStreptococcus pneumoniaestrain in immunocompetent mice, or with MRSA, GISA, and VRE strains in neutropenic mice, the 50% effective dose (ED50) values of NAI-107 were comparable or lower than those of reference compounds, irrespective of the strain and immune status (0.51 to 14.2 mg/kg of body weight for intravenous [i.v.] NAI-107, 5.1 to 22.4 for oral linezolid, and 22.4 for subcutaneous [s.c.] vancomycin). Inthe granuloma pouch model induced in rats with a MRSA strain, intravenous NAI-107 showed a dose-proportional bactericidal activity that, at a single 40-mg/kg dose, compared with 2 20-mg/kg doses at a 12-h or 24-h interval, caused a 3-log10-CFU/ml reduction of viable MRSA in exudates that persisted for more than 72 h. Rat endocarditis was induced with a MRSA strain and treated for five consecutive days. In a first experiment, using 5, 10, or 20 mg/kg/day, and in a second experiment, when 10 mg/kg at 12-h intervals was compared to 20 mg/kg/day, intravenous NAI-107 was effective in reducing the bacterial load in heart vegetations in a dose-proportional manner. Trough plasma levels, as determined on days 2 and 5, were several times higher than the NAI-107 minimal bactericidal concentration (MBC). NAI-107 binding to rat and human serum ranges between 93% and 98.6%. The rapid bactericidal activity of NAI-107 observedin vitrowas thus confirmed by the efficacy in several models of experimental infection induced by Gram-positive pathogens, supporting further investigation of the compound.


2016 ◽  
Vol 60 (5) ◽  
pp. 3106-3111 ◽  
Author(s):  
Olusegun O. Soge ◽  
Stephen J. Salipante ◽  
David No ◽  
Erin Duffy ◽  
Marilyn C. Roberts

ABSTRACTWe evaluated thein vitroactivity of delafloxacin against a panel of 117Neisseria gonorrhoeaestrains, including 110 clinical isolates collected from 2012 to 2015 and seven reference strains, compared with the activities of seven antimicrobials currently or previously recommended for treatment of gonorrhea. We examined the potential for delafloxacin to select for resistant mutants in ciprofloxacin-susceptible and ciprofloxacin-resistantN. gonorrhoeae. We characterized mutations in thegyrA,gyrB,parC, andparEgenes and the multidrug-resistant efflux pumps (MtrC-MtrD-MtrE and NorM) by PCR and sequencing and by whole-genome sequencing. The MIC50, MIC90, and MIC ranges of delafloxacin were 0.06 μg/ml, 0.125 μg/ml, and ≤0.001 to 0.25 μg/ml, respectively. The frequency of spontaneous mutation ranged from 10−7to <10−9. The multistep delafloxacin resistance selection of 30 daily passages resulted in stable resistant mutants. There was no obvious cross-resistance to nonfluoroquinolone comparator antimicrobials. A mutant with reduced susceptibility to ciprofloxacin (MIC, 0.25 μg/ml) obtained from the ciprofloxacin-susceptible parental strain had a novel Ser91Tyr alteration in thegyrAgene. We also identified new mutations in thegyrAand/orparCandparEgenes and the multidrug-resistant efflux pumps (MtrC-MtrD-MtrE and NorM) of two mutant strains with elevated delafloxacin MICs of 1 μg/ml. Although delafloxacin exhibited potentin vitroactivity againstN. gonorrhoeaeisolates and reference strains with diverse antimicrobial resistance profiles and demonstrated a low tendency to select for spontaneous mutants, it is important to establish the correlation between these excellentin vitrodata and treatment outcomes through appropriate randomized controlled clinical trials.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 727
Author(s):  
Hang Thi Nguyen ◽  
Mahmud T. Morshed ◽  
Daniel Vuong ◽  
Andrew Crombie ◽  
Ernest Lacey ◽  
...  

Our recent focus on the “lost antibiotic” unguinol and related nidulin-family fungal natural products identified two semisynthetic derivatives, benzguinols A and B, with unexpected in vitro activity against Staphylococcus aureus isolates either susceptible or resistant to methicillin. Here, we show further activity of the benzguinols against methicillin-resistant isolates of the animal pathogen Staphylococcus pseudintermedius, with minimum inhibitory concentration (MIC) ranging 0.5–1 μg/mL. When combined with sub-inhibitory concentrations of colistin, the benzguinols demonstrated synergy against Gram-negative reference strains of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa (MICs of 1–2 μg/mL in the presence of colistin), whereas the benzguinols alone had no activity. Administration of three intraperitoneal (IP) doses of 20 mg/kg benzguinol A or B to mice did not result in any obvious adverse clinical or pathological evidence of acute toxicity. Importantly, mice that received three 20 mg/kg IP doses of benzguinol A or B at 4 h intervals exhibited significantly reduced bacterial loads and longer survival times than vehicle-only treated mice in a bioluminescent S. aureus murine sepsis challenge model. We conclude that the benzguinols are potential candidates for further development for specific treatment of serious bacterial infections as both stand-alone antibiotics and in combination with existing antibiotic classes.


Antibiotics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 865
Author(s):  
Dafne Bongiorno ◽  
Lorenzo Mattia Lazzaro ◽  
Stefania Stefani ◽  
Floriana Campanile

The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) infections, always treated with vancomycin and daptomycin, has led to the emergence of vancomycin-intermediate (VISA), heteroresistant vancomycin-intermediate (hVISA) and daptomycin non-susceptible (DNS) S. aureus. Even if glycopeptides and daptomycin remain the keystone for treatment of resistant S. aureus, the need for alternative therapies that target MRSA has now become imperative. The in vitro antibacterial and bactericidal activity of dalbavancin was evaluated against clinically relevant S. aureus showing raised antibiotic resistance levels, from methicillin-susceptible to Multidrug-Resistant (MDR) MRSA, including hVISA, DNS and rifampicin-resistant (RIF-R) strains. A total of 124 S. aureus strains were tested for dalbavancin susceptibility, by the broth microdilution method. Two VISA and 2 hVISA reference strains, as well as a vancomycin-resistant (VRSA) reference strain and a methicillin-susceptible Staphylococcus aureus (MSSA) reference strain, were included as controls. Time–kill curves were assayed to assess bactericidal activity. Dalbavancin demonstrated excellent in vitro antibacterial and bactericidal activity against all S. aureus resistance classes, including hVISA and DNS isolates. The RIF-R strains showed the highest percentage of isolates with non-susceptibility, reflecting the correlation between rpoB mutations and VISA/hVISA emergence. Our observations suggest that dalbavancin can be considered as an effective alternative for the management of severe MRSA infections also sustained by refractory phenotypes.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 457
Author(s):  
Joana D. M. de Sá ◽  
José A. Pereira ◽  
Tida Dethoup ◽  
Honorina Cidade ◽  
Maria Emília Sousa ◽  
...  

Previously unreported anthraquinone, acetylpenipurdin A (4), biphenyl ether, neospinosic acid (6), dibenzodioxepinone, and spinolactone (7) were isolated, together with (R)-6-hydroxymellein (1), penipurdin A (2), acetylquestinol (3), tenellic acid C (5), and vermixocin A (8) from the culture of a marine sponge-associated fungus Neosartorya spinosa KUFA1047. The structures of the previously unreported compounds were established based on an extensive analysis of 1D and 2D NMR spectra as well as HRMS data. The absolute configurations of the stereogenic centers of 5 and 7 were established unambiguously by comparing their calculated and experimental electronic circular dichroism (ECD) spectra. Compounds 2 and 5–8 were tested for their in vitro acetylcholinesterase and tyrosinase inhibitory activities as well as their antibacterial activity against Gram-positive and Gram-negative reference, and multidrug-resistant strains isolated from the environment. The tested compounds were also evaluated for their capacity to inhibit biofilm formation in the reference strains.


Sign in / Sign up

Export Citation Format

Share Document