scholarly journals Effects of Sources or Formulations of Vitamin K3 on Its Stability during Extrusion or Pelleting in Swine Feed

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 633
Author(s):  
Huakai Wang ◽  
Pan Yang ◽  
Longxian Li ◽  
Nan Zhang ◽  
Yongxi Ma

Two studies were conducted to determine the stability of vitamin K3 (VK3) in swine diets during extrusion or pelleting. The two sources were menadione sodium bisulfite (MSB) and menadione nicotinamide bisulfite (MNB), and the three formulations were crystal micro-capsule formulation and micro-sphere formulation. The recovery of six types of VK3 in swine diets was investigated after extrusion at 100 °C or 135 °C in Experiment 1. The recovery of six types of VK3 was investigated when the diets were pelleted at 60 °C (low temperature; LT) or 80 °C (high temperature; HT) and the length to diameter ratios were 5.2:1 (low length to diameter ratio; LR) or 7.2:1 (high length to diameter ratio; HR) in Experiment 2. In Experiment 1, MNB recovery (72.74%) was higher than MSB recovery (64.67%) after extrusion, while recovery of VK3 of crystal (74.16%) was higher than the recovery of micro-capsule (65.25%) and micro-sphere (66.72%). The recovery of VK3 (70.88%) was higher when extruded at 100 °C than that at 135 °C (66.54%). In Experiment 2, MNB recovery (86.21%) was higher than MSB recovery (75.49%) after pelleting, while the recovery of VK3 of micro-capsule (85.06%) was higher than the recovery of crystal (81.40%) and micro-sphere (76.09%). The recovery of VK3 (75.50%) was lower after HTHR pelleting than LTLR (83.62%), LTHR (81.52%) or HTLR (82.76%) treatment. Our results show that MNB has greater stability than MSB. VK3 of crystal or VK3 of micro-capsule were recommended for extrusion or pelleting, respectively.

Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 894 ◽  
Author(s):  
Pan Yang ◽  
Huakai Wang ◽  
Min Zhu ◽  
Yongxi Ma

Two experiments were conducted to determine the stability of microencapsulated and non-microencapsulated forms of vitamins in diets during extrusion and pelleting. We investigated the recovery of vitamins in swine diets after extrusion at 100 °C, 140 °C, or 180 °C. Next, two diets were conditioned at 65 °C (low temperature; LT) or 85 °C (high temperature; HT), and pellets were formed using a 2.5 × 15.0 mm (low length-to-diameter ratio; LR) or 2.5 × 20.0 mm (high length-to-diameter ratio; HR) die. The extrusion temperature had a significant effect on the recovery of vitamins E, B1, B2, B3, and B5 in the diets. The diet extruded at 100 °C had higher B1, B2, B3, and B5 vitamin recoveries than diets extruded at 140 °C and 180 °C. Microencapsulated vitamins A and K3 had greater stability than non-microencapsulated vitamins A and K3 at 100 °C and 140 °C extrusion. In the diet extruded at 180 °C, microencapsulated vitamins A, D3, and K3 had higher recoveries than non-microencapsulated vitamins A, D3, and K3. The recovery of vitamin K3 in diets after LTLR (low temperature + low length-to-diameter ratio) or HTLR (high temperature + low length-to-diameter ratio) pelleting was greater (p < 0.05) than after LTHR (low temperature + high length-to-diameter ratio) and HTHR (high temperature + high length-to-diameter ratio) pelleting. Our results clearly show that low extrusion temperature and low pellet temperature, and a low length-to-diameter ratio (L:D ratio) for pellet mill die are recommended for pig feed. Moreover, microencapsulated vitamins had greater stability compared to non-microencapsulated vitamins.


2011 ◽  
Vol 327 ◽  
pp. 153-158
Author(s):  
Zhi Ling Peng

On the basis of analysis of aerodynamics characteristic of high length-to-diameter ratio missile on the fly, Study the stability of elastic vibration.


CrystEngComm ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 1657-1662
Author(s):  
Na Zhang ◽  
Yuqing Yin ◽  
Jian Zhang ◽  
Tao Wang ◽  
Siyuan Wang ◽  
...  

Lu2O3 crystals have attracted intense attention due to their great potential in the field of high power solid-state lasers.


2018 ◽  
Author(s):  
M. C. Kara ◽  
V. Jaiswal ◽  
P. P. Sharma ◽  
B. Tulimilli ◽  
S. Cosgrove

2013 ◽  
Vol 833 ◽  
pp. 80-83
Author(s):  
Wei Xiao Peng ◽  
Kai Jun Wang ◽  
Jin Hu ◽  
Yu Tian Wang

In this paper, we demonstrated the acicular-like ZnO nanostructure powder were prepared by hydrothermal method. We used the industrial aerosol elemental zinc powders through high energy ball mill, and then took ball mill zinc powder into autoclave reactor direct synthesis high length to diameter ratio of acicular-like ZnO nanostructure powder. The samples phase were studied by XRD, the morphology of the sample were observed by SEM, the samples of luminous performance were studied by Fluorescence spectrophotometer. When the hydrothermal temperature is 200°C, hydrothermal time is 24 h, mineralizer of NaOH concentration is 1 mol/L, the samples were washed by alcohol and then dried at 80°C for 3 hours. We had synthesized the high dispersion, high length to diameter ratio up to 50 acicular-like ZnO nanostructure powder.


2012 ◽  
Vol 41 (11) ◽  
pp. 1468-1470 ◽  
Author(s):  
Nursyafreena Attan ◽  
Hadi Nur ◽  
Jon Efendi ◽  
Hendrik Oktendy Lintang ◽  
Siew Ling Lee ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1140
Author(s):  
Huakai Wang ◽  
Pan Yang ◽  
Longxian Li ◽  
Nan Zhang ◽  
Yongxi Ma ◽  
...  

Six types of vitamin K3 (VK3); two sources (menadione sodium bisulfite, MSB; menadione nicotinamide bisulfite, MNB), and three different forms (crystal, micro-capsule, and micro-sphere) were used to determine the retention of VK3 in vitamin premixes (Experiment 1) or vitamin trace mineral (VTM) premixes (Experiment 2) after 1, 2, 3, and 6 months of storage. The retention of VK3 in vitamin premixes was evaluated at 25 °C/60% relative humidity or 40 °C/75% relative humidity in an incubator in Experiment 1 and in VTM premixes (choline chloride: 0 vs. 16,000 mg/kg) stored at room temperature in Experiment 2. The VK3 retention in vitamin premix or VTM premix decreased significantly with the extension of storage time (p < 0.05). In Experiment 1, the VK3 retention was higher in the 25 °C/60% incubator (56%) than in the 40 °C/75% incubator (28%). The MNB retention (52%) was higher than MSB retention (32%). The retention of VK3 in micro-capsules (43%) or micro-spheres (48%) was higher than the crystal form (35%) after six months of storage. In Experiment 2, there was no difference between the retention of MSB (49%) or MNB (47%). The retention of VK3 of micro-capsule (51%) or micro-sphere (54%) was higher than that of crystal form (40%). The VK3 retention was higher in the choline-free group (51%) than in the choline group (47%) after six months of storage. Finally, the predicted equations of VK3 retention with storage time in vitamin premixes or VTM premixes were established. The R2 of the prediction equations was ≥0.9005, indicating that time is an important factor in predicting VK3 retention. In conclusion, the higher temperature-relative humidity, choline had negative effects on VK3 retention during premix storage. MNB retention was higher than MSB during storage of vitamin premix. The encapsulated forms of VK3, micro-capsules and micro-spheres, could improve VK3 storage stability in vitamin premix and VTM premix.


2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Siti Zubaidah Sulaiman ◽  
Rafiziana Md Kasmani ◽  
A. Mustafa

Flame propagation in a closed pipe with diameter 0.1 m and 5.1 m long, as well as length to diameter ratio (L/D) of 51, was studied experimentally. Hydrogen/air, acetylene/air and methane/air with stoichiometric concentration were used to observe the trend of flame propagation throughout the pipe. Experimental work was carried out at operating condition: pressure 1 atm and temperature 273 K. Results showed that all fuels are having a consistent trend of flame propagation in one-half of the total pipe length in which the acceleration is due to the piston-like effect. Beyond the point, fuel reactivity and tulip phenomenon were considered to lead the flame being quenched and decrease the overpressures drastically. The maximum overpressure for all fuels are approximately 1.5, 7, 8.5 barg for methane, hydrogen, and acetylene indicating that acetylene explosion is more severe. 


Sign in / Sign up

Export Citation Format

Share Document