scholarly journals Effect of Forskolin on Body Weight, Glucose Metabolism and Adipocyte Size of Diet-Induced Obesity in Mice

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 645
Author(s):  
Jing-Yi Chen ◽  
Shao-Yu Peng ◽  
Yeong-Hsiang Cheng ◽  
I-Ta Lee ◽  
Yu-Hsiang Yu

The purpose of this study was to investigate the effects of forskolin on body weight, glucose metabolism and fat cell diameter in high-fat diet-induced obese mice. Four-week-old male mice (C57BL/6) were randomly assigned to 1 of 3 treatment groups: a high-fat diet plus 5% dimethyl sulfoxide (vehicle), high-fat diet plus 2 mg/kg of forskolin (dissolved in 5% dimethyl sulfoxide) and high-fat diet plus 4 mg/kg of forskolin (dissolved in 5% dimethyl sulfoxide). Forskolin or dimethyl sulfoxide was administered intraperitoneally every two days. The results indicated that no significant difference was observed in the body weight, feed intake and serum lipid parameters among groups at 20 weeks of age. The blood glucose levels were significantly reduced in the groups treated with 2 mg/kg of forskolin before glucose tolerance test. Forskolin administration linearly decreased blood glucose levels of high-fat diet-fed mice at 90 min and total area under curve (AUC) after insulin tolerance test. The subcutaneous adipocyte diameter was significantly reduced in the groups treated with 2 mg/kg of forskolin. Forskolin administration linearly reduced the gonadal adipocyte diameter of high-fat diet-fed mice. Forskolin significantly reduced the differentiation of murine mesenchymal stem cells into adipocytes and this was accompanied by a decrease in intracellular triglyceride content and an increase in glycerol concentration in the culture medium. The subcutaneous adipocyte diameter, gonadal adipocyte diameter and total AUC of insulin tolerance test were moderately negatively correlated with the concentration of forskolin in the high-fat diet-induced obese model. These results demonstrate that forskolin can regulate glucose metabolism and reduce fat cell diameter of high-fat diet-fed mice and inhibit the adipocyte differentiation of murine mesenchymal stem cells.

Author(s):  
Randall F. D'Souza ◽  
Stewart W.C. Masson ◽  
Jonathan S. T. Woodhead ◽  
Samuel L James ◽  
Caitlin MacRae ◽  
...  

Neutrophils accumulate in insulin sensitive tissues during obesity and may play a role in impairing insulin sensitivity. The major serine protease expressed by neutrophils is neutrophil elastase (NE), which is inhibited endogenously by α1-antitrypsin A (A1AT). We investigated the effect of exogenous (A1AT) treatment on diet induced metabolic dysfunction. Male C57Bl/6j mice fed a chow or a high fat diet (HFD) were randomized to receive 3x weekly i.p injections of either Prolastin (human A1AT; 2mg) or vehicle (PBS) for 10 weeks. Prolastin treatment did not affect plasma NE concentration, body weight, glucose tolerance or insulin sensitivity in chow fed mice. In contrast, Prolastin treatment attenuated HFD induced increases in plasma and white adipose tissue (WAT) NE without affecting circulatory neutrophil levels or increases in body weight. Prolastin-treated mice fed a HFD had improved insulin sensitivity, as assessed by insulin tolerance test, and this was associated with higher insulin-dependent IRS-1 (insulin receptor substrate) and AktSer473phosphorylation, and reduced inflammation markers in WAT but not liver or muscle. In 3T3-L1 adipocytes, Prolastin reversed recombinant NE-induced impairment of insulin-stimulated glucose uptake and IRS-1 phosphorylation. Furthermore, PDGF mediated p-AktSer473 activation and glucose uptake (which is independent of IRS-1) was not affected by recombinant NE treatment. Collectively, our findings suggest that NE infiltration of WAT during metabolic overload contributes to insulin-resistance by impairing insulin-induced IRS-1 signaling.


2016 ◽  
Vol 62 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Ivan Nikolaevich Tiurenkov ◽  
Denis Vladimirovich Kurkin ◽  
Dmitry Aleksandrovich Bakulin ◽  
Elena Vladimirovna Volotova ◽  
Mikhail Ayratovich Chafeev

The search for new drugs for the treatment of type 2 diabetes mellitus (T2DM) and obesity remains an urgent problem. Drugs with influence on incretin system are widely used in the treatment of T2DM and obesity, since in addition to the hypoglycemic action of their inherent hypophagic effects. With the discovery of GPR119 receptor, there is the opportunity to pharmacological stimulation of endogenous secretion of incretins. Compound ZB-16 is active GPR119 agonist with IC50=7 nM. Its activation leads to increased secretion of the major incretins (GLP-1 and GIP), which are able to influence glucose metabolism and feeding behavior.Aims — to study the effect of GPR 119 receptor agonist compounds ZB-16 on blood glucose, body weight and food intake in rats with obesity.Material and methods.Male rats with initial weight 390—400 g were fed with high-carbohydrate and high-fat diet. During the next four weeks the animals orally received ZB-16 (1 mg/kg) and metformin (400 mg/kg) and then we assessed the level of water and food consumption, blood glucose levels, and performed oral glucose tolerance test (OGTT).Results.Compound ZB-16 and metformin reduced fasting blood glucose levels and weight of experimental animals, while the control rats gained weight. GPR119 agonist is more pronounced than metformin reduced the area under the curve «glucose of concentration—time» during the OGTT.Conclusions.Novel GPR119 agonist — ZB-16 is comparable to metformin in hypoglycemic and anorexigenic effect in animals with obesity caused high-carbohydrate and high-fat diet.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rosalba Senese ◽  
Federica Cioffi ◽  
Giuseppe Petito ◽  
Pieter de Lange ◽  
Aniello Russo ◽  
...  

Abstract The 3,5-diiodo-L-thyronine (T2) has emerged as an active iodothyronine and its beneficial effects on glucose metabolism including glucose tolerance and insulin resistance is well established. However, little is known about its molecular mechanisms. Given the emerging importance of microRNAs in various metabolic diseases, in this study a possible link between the effects of T2 on glucose metabolism and miRNA expression was investigated by using an in vivo model in which T2 was administered in rats receiving a high fat diet, a condition known to impair glucose homeostasis. The results showed that T2-treated rats had a better tolerance to glucose load and a better performance at the insulin tolerance test in comparison to high fat diet animals. Interestingly, in the serum of the animals treated with T2 there was a general decrease of miRNAs with miR-22a-3p, miR-34c-5p and miR-33a-3p significantly downregulated. Furthermore, miR-22a-3p had the largest variation pointing toward its preeminent role in T2 metabolic effect. In fact, in liver there was an up-regulation of its target (Transcription Factor 7) Tcf7, which had an important impact on gluconeogenesis. This study provide, for the first time, evidences that miRNAs are involved in the effects exerted by T2 on glucose homeostasis.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1598-1610 ◽  
Author(s):  
Maria M. Glavas ◽  
Melissa A. Kirigiti ◽  
Xiao Q. Xiao ◽  
Pablo J. Enriori ◽  
Sarah K. Fisher ◽  
...  

Childhood obesity increases the risk of adult obesity and diabetes, suggesting that early overnutrition permanently programs altered energy and glucose homeostasis. In the present studies, we used a mouse model to investigate whether early overnutrition increases susceptibility to obesity and insulin resistance in response to a high-fat diet (HFD). Litters from Swiss Webster dams were culled to three [chronic postnatal overnutrition (CPO)] or 10 (control) pups and then weaned onto standard chow at postnatal day (P) 23. At 6 wk of age, a subset of mice was placed on HFD, and glucose and insulin tolerance were examined at 16–17 wk of age. Leptin sensitivity was determined by hypothalamic phosphorylated signal transducer and activator of transcription-3 immunoreactivity at P16 and adulthood after ip leptin. CPO mice exhibited accelerated body weight gain and hyperleptinemia during the preweaning period but only a slightly heavier body weight and normal glucose tolerance in adulthood on standard chow diet. Importantly, CPO mice exhibited significant leptin resistance in the arcuate nucleus, demonstrated by reduced activation of phospho-signal transducer and activator of transcription-3, as early as P16 and throughout life, despite normalized leptin levels. In response to HFD, CPO but not control mice displayed insulin resistance in response to an insulin tolerance test. In conclusion, CPO mice exhibited early and persistent leptin resistance in the arcuate nucleus and, in response to HFD, rapid development of obesity and insulin resistance. These studies suggest that early overnutrition can permanently alter energy homeostasis and significantly increase susceptibility to obesity and insulin resistance.


2019 ◽  
Vol 150 (2) ◽  
pp. 294-302
Author(s):  
Ya-nan Sun ◽  
Jia-qiang Huang ◽  
Zhong-zhou Chen ◽  
Min Du ◽  
Fa-zheng Ren ◽  
...  

ABSTRACT Background Ectopic fat accumulation in skeletal muscle results in dysfunction and atrophy, but the underlying molecular mechanisms remain unclear. Objective The aim of this study was to investigate the effects of a high-fat diet (HFD) in modulating the structure and energy metabolism of skeletal muscle and the underlying mechanisms in mice. Methods Four-week-old male C57BL/6 J mice (n = 30) were allowed 1 wk for acclimatization. After 6 mice with low body weight were removed from the study, the remaining 24 mice were fed with a normal-fat diet (NFD; 10% energy from fat, n = 12) or an HFD (60% energy from fat, n = 12) for 24 wk. At the end of the experiment, serum glucose and lipid concentrations were measured, and skeletal muscle was collected for atrophy analysis, inflammation measurements, and phosphoproteomic analysis. Results Compared with the NFD, the HFD increased (P < 0.05) body weight (35.8%), serum glucose (64.5%), and lipid (27.3%) concentrations, along with elevated (P < 0.05) expressions of the atrophy-related proteins muscle ring finger 1 (MURF1; 27.6%) and muscle atrophy F-box (MAFBX; 44.5%) in skeletal muscle. Phosphoproteomic analysis illustrated 64 proteins with differential degrees of phosphorylation between the HFD and NFD groups. These proteins were mainly involved in modulating cytoskeleton [adenylyl cyclase-associated protein 2 (CAP2) and actin-α skeletal muscle (ACTA1)], inflammation [NF-κB-activating protein (NKAP) and serine/threonine-protein kinase RIO3 (RIOK3)], glucose metabolism [Cdc42-interacting protein 4 (TRIP10); protein kinase C, and casein kinase II substrate protein 3 (PACSIN3)], and protein degradation [heat shock protein 90 kDa (HSP90AA1)]. The HFD-induced inhibitions of the insulin signaling pathway and activations of inflammation in skeletal muscle were verified by Western blot analysis. Conclusions Quantitative phosphoproteomic analysis in C57BL/6 J mice fed an NFD or HFD for 24 wk revealed that the phosphorylation of inflammatory proteins and proteins associated with glucose metabolism at specific serine residues may play critical roles in the regulation of skeletal muscle atrophy induced by an HFD. This work provides information regarding underlying molecular mechanisms for inflammation-induced dysfunction and atrophy in skeletal muscle.


Author(s):  
Xiaobing Cui ◽  
Jia Fei ◽  
Sisi Chen ◽  
Gaylen L. Edwards ◽  
Shi-You Chen

Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases, and many other chronic diseases. The objective of this study was to determine the role of adenosine deaminase acting on RNA 1 (ADAR1) in the development of obesity and insulin resistance. Wild-type (WT) and heterozygous ADAR1-deficient (Adar1+/-) mice were fed normal chow or high-fat diet (HFD) for 12 weeks. Adar1+/- mice fed with HFD exhibited a lean phenotype with reduced fat mass compared with WT controls, although no difference was found under chow diet conditions. Blood biochemical analysis and insulin tolerance test showed that Adar1+/- improved HFD-induced dyslipidemia and insulin resistance. Metabolic studies showed that food intake was decreased in Adar1+/- mice compared with the WT mice under HFD conditions. Paired feeding studies further demonstrated that Adar1+/- protected mice from HFD-induced obesity through decreased food intake. Furthermore, Adar1+/- restored the increased ghrelin expression in stomach and the decreased serum peptide YY levels under HFD conditions. These data indicate that ADAR1 may contribute to diet-induce obesity, at least partially, through modulating the ghrelin and peptide YY expression and secretion.


2012 ◽  
Vol 123 (9) ◽  
pp. 545-546
Author(s):  
Regje M. E. Blümer ◽  
Gregory R. Steinberg

TRAIL [TNF (tumour necrosis factor)-related apoptosis-inducing ligand] is in clinical trials for the treatment of cancer. In the present issue of Clinical Science, Bernardi and co-workers report that the administration of TRAIL in mice fed on a high-fat diet resulted in reduced adiposity and improved metabolic responses to a glucose and insulin tolerance test compared with mice without TRAIL. The metabolic improvements were associated with a higher rate of apoptotic fat cells and with a reduction in the levels of pro-inflammatory cytokines. These results suggest that TRAIL could be an exciting new therapeutic for treating obesity, but further studies are required to determine its major mechanisms of action.


2011 ◽  
Vol 108 (2) ◽  
pp. 218-228 ◽  
Author(s):  
Pratibha V. Nerurkar ◽  
Adrienne Nishioka ◽  
Philip O. Eck ◽  
Lisa M. Johns ◽  
Esther Volper ◽  
...  

Renewed interest in alternative medicine among diabetic individuals prompted us to investigate anti-diabetic effects of Morinda citrifolia (noni) in high-fat diet (HFD)-fed mice. Type 2 diabetes is associated with increased glucose production due to the inability of insulin to suppress hepatic gluconeogenesis and promote glycolysis. Insulin inhibits gluconeogenesis by modulating transcription factors such as forkhead box O (FoxO1). Based on microarray analysis data, we tested the hypothesis that fermented noni fruit juice (fNJ) improves glucose metabolism via FoxO1 phosphorylation. C57BL/6 male mice were fed a HFD and fNJ for 12 weeks. Body weights and food intake were monitored daily. FoxO1 expression was analysed by real-time PCR and Western blotting. Specificity of fNJ-associated FoxO1 regulation of gluconeogenesis was confirmed by small interfering RNA (siRNA) studies using human hepatoma cells, HepG2. Supplementation with fNJ inhibited weight gain and improved glucose and insulin tolerance and fasting glucose in HFD-fed mice. Hypoglycaemic properties of fNJ were associated with the inhibition of hepatic FoxO1 mRNA expression, with a concomitant increase in FoxO1 phosphorylation and nuclear expulsion of the proteins. Gluconeogenic genes, phosphoenolpyruvate C kinase (PEPCK) and glucose-6-phosphatase (G6P), were significantly inhibited in mice fed a HFD+fNJ. HepG2 cells demonstrated more than 80 % inhibition of PEPCK and G6P mRNA expression in cells treated with FoxO1 siRNA and fNJ. These data suggest that fNJ improves glucose metabolism via FoxO1 regulation in HFD-fed mice.


Sign in / Sign up

Export Citation Format

Share Document