scholarly journals Spatio-Temporal Patterns and Consequences of Road Kills: A Review

Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 799
Author(s):  
Ayrton Gino Humberto Emilio Oddone Aquino ◽  
S’phumelele Lucky Nkomo

The development and expansion of road networks have profoundly impacted the natural landscape and various life forms. Animals are affected by these roads in a myriad of ways, none as devastating as road mortalities. This article reviews the literature on the magnitude, spatiotemporal patterns, factors, and consequences of Animal-Vehicle Collisions (AVCs) and the subsequent road kills. Furthermore, the review paper briefly outlines the relationship between roads and animals in the surrounding landscape and later examines the nature and impacts of AVCs. This article evaluates the statistics on the number of road kills and a critical analysis of the spatiotemporal patterns of these mortalities is also evaluated. Subsequently, the review paper examines current mitigation measures and the challenges impeding their success. The paper then concludes with an evaluation of geospatial tools (GIS) and other technologies used in road kill studies. The relevant findings of this paper are that, (1) factors influencing road kill patterns interact with one another; (2) AVCs have serious environmental, economic and social consequences; (3) road kill mitigation strategies suffer several challenges hindering their success; and (4) specific geospatial tools and other technologies have been utilised in assessing AVC road kill patterns. The review, therefore, recommends including overall road kill clusters of all animals in mortality surveys, increasing the spatial coverage of road kill observations, consistent surveying, sufficient research on nighttime driving distances and speed, utilising citizen science in all road mortality studies and incorporating GIS into all apps used for recording road kills. An increased sufficiency in road kill data coupled with improved technologies can enable more effective mitigation strategies to prevent AVCs.

2018 ◽  
Vol 45 (6) ◽  
pp. 559 ◽  
Author(s):  
Amy L. Shima ◽  
David S. Gillieson ◽  
Gabriel M. Crowley ◽  
Ross G. Dwyer ◽  
Lee Berger

Context Vehicle strike is a major issue where wildlife habitat is intersected by busy roads. Near Threatened Lumholtz’s tree-kangaroo (Dendrolagus lumholtzi) is a large (5–10 kg) semi-arboreal mammal found in populated rural and forested areas of north-eastern Australia. Warning signs, rope bridges and underpasses have not prevented ~20 animals being killed on the road each year. Aims To identify factors influencing Lumholtz’s tree-kangaroo vehicle strike to help inform mitigation options. Methods Citizen sightings (1998–2000) and 90 road-kills collected over 4.5 years on the Atherton Tablelands, Australia, were examined to determine the causes of vehicle strike in Lumholtz’s tree-kangaroo. The spatial distributions of sightings and road-kills were characterised using nearest-neighbour analysis, and the relationship between them was determined using a Bayesian approach that accounted for spatial autocorrelation. Gender, age, weight, season, rainfall, road and verge characteristics, traffic volumes, speed limits and mitigation measures were recorded to assess their influence on road-kill risk. Adequacy of speed limits to prevent collisions along road sections with more than four road-kills per 8 km (hazard zones) was assessed from visibility and stopping distances. Key results Vehicle strikes mainly affected male tree-kangaroos (2–5 years, 5.5–8 kg), occurred where live animals were most frequently sighted and were most likely on roads with narrow verges, low visibility and medium traffic volumes. Speed limits at hazard zones were inadequate to prevent collisions. Few warning signs corresponded with these zones, and road mortalities persisted where they did. Conclusions Unpredictable dispersal of young males and vehicle speeds unsuited to road conditions drive road mortalities in Lumholtz’s tree-kangaroo. Because tree-kangaroos do not appear to respond to existing mitigation measures, reducing traffic speeds, and increasing visibility, appear to be the most effective mitigation strategies for reducing tree-kangaroo road mortality. Implications Our findings suggest that tree-kangaroo road-kill can be reduced by reducing speed limits in line with government recommendations and increasing visibility by clearing road verges along sections of road with the highest tree-kangaroo mortality. Warning signage should be re-evaluated to determine whether its effectiveness can be improved.


2017 ◽  
Vol 95 (11) ◽  
pp. 821-828 ◽  
Author(s):  
Julia Sunga ◽  
Josh Sayers ◽  
Karl Cottenie ◽  
Christopher J. Kyle ◽  
Danielle M. Ethier

Road mortality is identified as a threat to American badger (Taxidea taxus (Schreber, 1777)) populations across Canada. Understanding habitat selection and movement in relation to roads is therefore vital to their conservation. Using telemetry data and road-kill locations of badgers in southwestern Ontario, we examined the relationship between habitat selection, movement patterns, and roads at three spatial scales. At the study-area scale, we assessed the effects of habitat attributes on burrow site selection. Several individuals placed their burrows closer to primary highways than expected, suggesting that badgers are not sensitive to human disturbances at this scale. Using straight-line movement trajectories between burrows, we analyzed individual movement patterns within home ranges. All badgers showed some degree of road avoidance, either crossing fewer roads or roads that posed lower mortality risk. At the road-crossing scale, we compared landscape features surrounding road-kill locations to random locations along the same roadway. There was a positive relationship between road-kill locations and number of water-based linear features and higher density of hedgerow cover. Our results provide evidence that badger movement is influenced by roads at multiple scales, which has important implications for managers interested in developing road-mitigation strategies for this endangered population.


Author(s):  
S. K. Tomar ◽  
A. Kaur ◽  
H. K. Dangi ◽  
T. Ghawana ◽  
K. Sarma

One of the major challenge from unplanned growth in the cities is the fire incidents posing a serious threat to life and property. Delhi, the capital city of India, has seen unplanned growth of colonies resulting in a serious concern for the relevant agencies. This paper investigates the relation between potential causes of fire incidents during 2013-2016 in South-West Delhi Division of Delhi Fire Services as part of risk analysis using the data about fire stations & their jurisdictions, incidents of fire, water reservoirs available, landuse and population data along with the divisional & sub-divisional boundaries of South-West Delhi division under Delhi Fire Service. Statistical and Geospatial tools have been used together to perform the risk analysis. The analysis reveals that difference in actual occupancy and defined landuse as a part of unplanned growth of settlements is found to be the main reason behind the major fire incidents. The suggested mitigation measures focus on legal, policy, physical & technological aspects and highlight the need to bring the systemic changes with changing scenario of demographics and infrastructure to accommodate more aspects of ground reality.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1861
Author(s):  
Daniela Calvetti ◽  
Alexander P. Hoover ◽  
Johnie Rose ◽  
Erkki Somersalo

Understanding the dynamics of the spread of COVID-19 between connected communities is fundamental in planning appropriate mitigation measures. To that end, we propose and analyze a novel metapopulation network model, particularly suitable for modeling commuter traffic patterns, that takes into account the connectivity between a heterogeneous set of communities, each with its own infection dynamics. In the novel metapopulation model that we propose here, transport schemes developed in optimal transport theory provide an efficient and easily implementable way of describing the temporary population redistribution due to traffic, such as the daily commuter traffic between work and residence. Locally, infection dynamics in individual communities are described in terms of a susceptible-exposed-infected-recovered (SEIR) compartment model, modified to account for the specific features of COVID-19, most notably its spread by asymptomatic and presymptomatic infected individuals. The mathematical foundation of our metapopulation network model is akin to a transport scheme between two population distributions, namely the residential distribution and the workplace distribution, whose interface can be inferred from commuter mobility data made available by the US Census Bureau. We use the proposed metapopulation model to test the dynamics of the spread of COVID-19 on two networks, a smaller one comprising 7 counties in the Greater Cleveland area in Ohio, and a larger one consisting of 74 counties in the Pittsburgh–Cleveland–Detroit corridor following the Lake Erie’s American coastline. The model simulations indicate that densely populated regions effectively act as amplifiers of the infection for the surrounding, less densely populated areas, in agreement with the pattern of infections observed in the course of the COVID-19 pandemic. Computed examples show that the model can be used also to test different mitigation strategies, including one based on state-level travel restrictions, another on county level triggered social distancing, as well as a combination of the two.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Haoxiang Yang ◽  
Özge Sürer ◽  
Daniel Duque ◽  
David P. Morton ◽  
Bismark Singh ◽  
...  

AbstractCommunity mitigation strategies to combat COVID-19, ranging from healthy hygiene to shelter-in-place orders, exact substantial socioeconomic costs. Judicious implementation and relaxation of restrictions amplify their public health benefits while reducing costs. We derive optimal strategies for toggling between mitigation stages using daily COVID-19 hospital admissions. With public compliance, the policy triggers ensure adequate intensive care unit capacity with high probability while minimizing the duration of strict mitigation measures. In comparison, we show that other sensible COVID-19 staging policies, including France’s ICU-based thresholds and a widely adopted indicator for reopening schools and businesses, require overly restrictive measures or trigger strict stages too late to avert catastrophic surges. As proof-of-concept, we describe the optimization and maintenance of the staged alert system that has guided COVID-19 policy in a large US city (Austin, Texas) since May 2020. As cities worldwide face future pandemic waves, our findings provide a robust strategy for tracking COVID-19 hospital admissions as an early indicator of hospital surges and enacting staged measures to ensure integrity of the health system, safety of the health workforce, and public confidence.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2002
Author(s):  
Stefanos Stefanidis ◽  
Vasileios Alexandridis ◽  
Chrysoula Chatzichristaki ◽  
Panagiotis Stefanidis

Soil is a non-renewable resource essential for life existence. During the last decades it has been threatened by accelerating erosion with negative consequences for the environment and the economy. The aim of the current study was to assess soil loss changes in a typical Mediterranean ecosystem of Northern Greece, under climate change. To this end, freely available geospatial data was collected and processed using open-source software package. The widespread RUSLE empirical erosion model was applied to estimate soil loss. Current and future rainfall erosivity were derived from a national scale study considering average weather conditions and RCMs outputs for the medium Representative Concentration Pathway scenario (RCP4.5). Results showed that average rainfall erosivity (R-Factor) was 508.85 MJ mm ha h−1 y−1 while the K-factor ranged from 0.0008 to 0.05 t ha h ha−1 MJ−1 mm−1 and LS-factor reached 60.51. Respectively, C-factor ranged from 0.01 to 0.91 and P-factor ranged from 0.42 to 1. The estimated potential soil loss rates will remain stable for the near future period (2021–2050), while an increase of approximately 9% is expected by the end of the 21th century (2071–2100). The results suggest that appropriate erosion mitigation strategies should be applied to reduce erosion risk. Subsequently, appropriate mitigation measures per Land Use/Land Cover (LULC) categories are proposed. It is worth noting that the proposed methodology has a high degree of transferability as it is based on open-source data.


2021 ◽  
Author(s):  
Jo Halvard Halleraker ◽  
Mahmoud S. R. Kenawi ◽  
Jan Henning L’Abée - Lund ◽  
Anders G. Finstad ◽  
Knut Alfredsen

<p><strong>Riverine biodiversity</strong> is threatened with severe degradation from multiple pressures worldwide. One of the key pressures in European rivers are hydromorphological alterations. Rehabilitation of river habitats is accordingly high on the political agenda at the start of UN decade of ecological restoration (2021-2030).</p><p><strong>Water storage</strong> for hydropower production (HP) has severe impacts on aquatic ecology in Norway, with more than 3000 water bodies designated as heavily modified due to hydropower. Norway is the largest hydropower producer in Europe with a huge amount of high head storage schemes. Ca 86 TWh of this is storage hydropower, which constitutes more than 50% of the total in Europe. This makes Norway a potentially significant supplier of hydropeaking services. Flexible hydropower operations are crucial for EUs Green Deal in balancing electricity from renewable intermittent power generation such as wind and solar. </p><p>Many Norwegian <strong>HP licenses</strong> were issued before modern environmental requirements evolved. Few are re-licensed with emerging strategies to mitigate hydropeaking. Still, there seems to be a common understanding of relevant mitigation strategies emerging between many large hydropower producers. For example, flow ramping from hydropower tailrace water with direct outlet into fjords or other lake reservoirs may be less environmentally harmful than outlet into riverine habitat.In this study, we have assessed the Norwegian hydropower portfolio of more than 1600 HP facilities constructing a national database focusing on the knowledge base for assessing potential downstream hydropower ecological impacts. The ecological severity of such flow ramping and the restoration/mitigation potential, may depend on;</p><p> </p><p>About 51 % of the HPs (ca<strong> 80TWh</strong>) have tailrace into shorter rivers (<1 km) or directly into fjords or lake/reservoirs. Many of the largest HPs are in this category (e.g 50 HP> 500 MW). Close to 800 HP might have downstream impacts on rivers (> 0.5 km; about 49 % of all HP, in total of ca<strong> 56 TWh</strong>). Probably <strong>> 3 000 km of regulated rivers</strong> in Norway therefor might need more ecosystem-based mode of HP operation. <strong>Flow ramping analysis: </strong> Ecosystem-based HP operational rules are established in a selection of sustainably managed Norwegian rivers, still with significant baseload production (0.35-0.76 - TWh annual prod). However, eco-friendly mode of operation seems to be rare as our analysis indicate that flow ramping with potential ecological degradation seems widespread in many rivers. Surprisingly, even in many with operational ramping restriction as required mitigation.Our database may be further improved and updated (with e.g. more flow ramping data and biological indicators) and serve as a basis for a national hydropeaking strategy, and hence make more of the Norwegian hydropower portfolio in line with the EUs sustainability taxonomy.</p>


2021 ◽  
Vol 27 (2) ◽  
pp. 231-243
Author(s):  
Ken K. S. Ho ◽  
Raymond C. H. Koo ◽  
Julian S. H. Kwan

ABSTRACT Dense urban development on a hilly terrain coupled with intense seasonal rainfall and heterogeneous weathering profiles give rise to acute debris-flow problems in Hong Kong. The Geotechnical Engineering Office (GEO) of the Hong Kong SAR Government has launched a holistic research and development (R&D) programme and collaborated with various tertiary institutes and professional bodies to support the development of a comprehensive technical framework for managing landslide risk and designing debris-flow mitigation measures. The scope of the technical development work includes compilation of landslide inventories, field studies of debris flows, development and calibration of tools for landslide run-out modelling, back analysis of notable debris flows, physical and numerical modelling of the interaction between debris flows and mitigation measures, formulation of a technical framework for evaluating debris-flow hazards, and development of pragmatic mitigation strategies and design methodologies for debris-flow countermeasures. The work has advanced the technical understanding of debris-flow hazards and transformed the natural terrain landslide risk management practice in Hong Kong. New analytical tools and improved design methodologies are being applied in routine geotechnical engineering practice.


Author(s):  
P. K. Joshi ◽  
Neena Priyanka

The dynamics of land use/land cover (LU/LC) is a manifestation of the cyclic correlation among the kind and magnitude of causes, impacts, responses and resulting ecological processes of the ecosystem. Thus, the holistic understanding of the complex mechanisms that control LU/LC requires synergetic adoption of measurement approaches, addressing issues, and identifying drivers of change and state of art technologies for mitigation measures. As the spatio-temporal heterogeneity of the LU/LC increases, its impact on biodiversity becomes even more difficult to anticipate. Thus, in order to understand the spatio-temporal dynamics of change in landscape and its relationship to biodiversity, it is necessary to reliably identify and quantify the indicators of change. In addition, it is also important to have better understanding of the technologies and techniques that serve as complimentary tool for land mitigation and conservation planning. Against this background, the chapter aims to synthesize LU/LC studies worldwide and their impacts on biodiversity. This chapter explores identification and analysis of key natural, socio-economic and regulatory drivers for LU/LC. Finally, it attempts to collate some LU/LC studies involving usage of geospatial tools, such as satellite remote sensing, Geographic Information System (GIS), Global Positioning System (GPS), and integrative tools, besides conventional approaches that could assist decision makers, land managers, stakeholders and researchers in better management and formulation of conservation strategies based on scientific grounds.


Author(s):  
Bob McKercher ◽  
Bruce Prideaux

Concerns about unsustainable tourism practices have been a subject of academic inquiry since the earliest days of tourism scholarship. Indeed, it seems that a majority of the papers published in the first editions of Annals of Tourism Research documented adverse social and cultural impacts of tourism. As McKercher and Prideaux (2014: 21) noted: “Wenkman (1975) documented the adverse environmental impacts of tourism on Hawaii. UNESCO (1976) published a literature review of the adverse social consequences of tourism. Rodenburg (1980) condemned large scale tourism in Bali and argued that small, community based tourism is preferred. Farrell (1979) documented adverse host-guest interactions. Jafari (1974) wrote a lengthy article documenting explicitly focusing on the costs, and not benefits of tourism.” Since then, a range of topics has emerged with the sophistication of the research evolving as our understanding of the causes of impacts and possible mitigation strategies have matured. Yet, to a large extent, many of the critical issues remain unresolved, in spite of the emergence of sustainable tourism as a dominant paradigm, as discussed in the next chapter. Hundreds, if not thousands of academic papers have been published examining the impacts of tourism on host communities (Nunkoo, Smith and Ramkissoon, 2013). Deery, Jago and Fredline (2012: 65), though, note that much of this work is derivative, leading them to conclude “research into the social impacts of tourism appears to be in a state of ‘arrested development,’ [where] there is a sense that the advances in understanding the impacts of tourists on host communities is incremental at best, or potentially circular.” The reasons are manifold. Far too much of this research is descriptive in nature, and is typified by a ‘fill in the blank study – Understanding social impacts/community attitudes of tourism in ___________ destination.’ Many papers as well use the same metrics to measure attitudes, and therefore, unsurprisingly, come to the same conclusions. A third issue is that much of this research is of the self-fulfilling prophecy kind, where if one structures the study to look for adverse impacts, they can be found. A fourth and more critical issue is the lack of theoretical basis for most of the research, something identified by Ap (1990) 30 years ago that is still relevant today. This chapter explores some of the challenges in the conceptual discussion of tourism impacts. It begins with quest for theory and then reviews the founda- tional models by Doxey (1975) and Budowski (1976) that framed unsustainable practices within a conflict paradigm. It then looks at such issues as impacts as a function of place change.


Sign in / Sign up

Export Citation Format

Share Document