scholarly journals Methane Emissions from Ruminants in Australia: Mitigation Potential and Applicability of Mitigation Strategies

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 951
Author(s):  
John L. Black ◽  
Thomas M. Davison ◽  
Ilona Box

Anthropomorphic greenhouse gases are raising the temperature of the earth and threatening ecosystems. Since 1950 atmospheric carbon dioxide has increased 28%, while methane has increased 70%. Methane, over the first 20 years after release, has 80-times more warming potential as a greenhouse gas than carbon dioxide. Enteric methane from microbial fermentation of plant material by ruminants contributes 30% of methane released into the atmosphere, which is more than any other single source. Numerous strategies were reviewed to quantify their methane mitigation potential, their impact on animal productivity and their likelihood of adoption. The supplements, 3-nitrooxypropanol and the seaweed, Asparagopsis, reduced methane emissions by 40+% and 90%, respectively, with increases in animal productivity and small effects on animal health or product quality. Manipulation of the rumen microbial population can potentially provide intergenerational reduction in methane emissions, if treated animals remain isolated. Genetic selection, vaccination, grape marc, nitrate or biochar reduced methane emissions by 10% or less. Best management practices and cattle browsing legumes, Desmanthus or Leucaena species, result in small levels of methane mitigation and improved animal productivity. Feeding large amounts daily of ground wheat reduced methane emissions by around 35% in dairy cows but was not sustained over time.

2017 ◽  
Vol 200 ◽  
pp. 429-451 ◽  
Author(s):  
D. T. Shindell ◽  
J. S. Fuglestvedt ◽  
W. J. Collins

Methane emissions contribute to global warming, damage public health and reduce the yield of agricultural and forest ecosystems. Quantifying these damages to the planetary commons by calculating the social cost of methane (SCM) facilitates more comprehensive cost-benefit analyses of methane emissions control measures and is the first step to potentially incorporating them into the marketplace. Use of a broad measure of social welfare is also an attractive alternative or supplement to emission metrics focused on a temperature target in a given year as it incentivizes action to provide benefits over a broader range of impacts and timescales. Calculating the SCM using consistent temporal treatment of physical and economic processes and incorporating climate- and air quality-related impacts, we find large SCM values, e.g. ∼$2400 per ton and ∼$3600 per ton with 5% and 3% discount rates respectively. These values are ∼100 and 50 times greater than corresponding social costs for carbon dioxide. Our results suggest that ∼110 of 140 Mt of identified methane abatement via scaling up existing technology and policy options provide societal benefits that outweigh implementation costs. Within the energy sector, renewables compare far better against use of natural gas in electricity generation when incorporating these social costs for methane. In the agricultural sector, changes in livestock management practices, promoting healthy diets including reduced beef and dairy consumption, and reductions in food waste have been promoted as ways to mitigate emissions, and these are shown here to indeed have the potential to provide large societal benefits (∼$50–150 billion per year). Examining recent trends in methane and carbon dioxide, we find that increases in methane emissions may have offset much of the societal benefits from a slowdown in the growth rate of carbon dioxide emissions. The results indicate that efforts to reduce methane emissions via policies spanning a wide range of technical, regulatory and behavioural options provide benefits at little or negative net cost. Recognition of the full SCM, which has typically been undervalued, may help catalyze actions to reduce emissions and thereby provide a broad set of societal benefits.


2012 ◽  
Vol 88 (02) ◽  
pp. 176-184 ◽  
Author(s):  
Dean Thompson ◽  
Jeff Leach ◽  
Martin Noel ◽  
Sonya Odsen ◽  
Milo Mihajlovich

Herbicide use in forest management is subject to controversy due to potential risks to human and environmental health. Provinces with substantial forest herbicide use are the focus of this comparative assessment of risk mitigation strategies for aerial application of forestry herbicides. This paper explores risk mitigation procedures surrounding treatment prescriptions, herbicide planning and permitting, and operational treatment, against a background of legislative and regulatory requirements. The three major-use provinces have similarly high levels of risk mitigation, including detailed herbicide application plan requirements, use of electronic guidance systems, buffering of environmental sensitivities, pre-spray reconnaissance flights and post-spray auditing. Notable differences include standardizing use of rotary-wing aircraft, use of low-drift nozzles, the rigor applied to aircraft calibration and use of block monitors for detailed meteorological monitoring. These techniques are generally unique to Alberta and are considered best management practices. The routine use of validated aerial dispersal and expert decision support systems (e.g., AgDisp, SprayAdvisor) is recommended, as it could provide significant added value to generic and spatially explicit risk mitigation with multiple applications. It is the opinion of the authors that aerial herbicide applications as performed in all three major-use jurisdictions are highly protective of human and environmental health.


2020 ◽  
Author(s):  
Carme Estruch ◽  
Roger Curcoll ◽  
Marta Borrós ◽  
Alba Àgueda ◽  
Josep-Anton Morguí

<p>Human activities implying land management are potential sources of greenhouse gases (GHGs) such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>). In addition, agricultural management practices enhances the presence of reactive gases in the atmosphere such as ammonia (NH<sub>3</sub>).  Knowing the atmospheric variability of gases in relation to the different stages of the rice culture cycle and other anthropic activities could help to improve GHGs' mitigation strategies in deltas.</p><p>A mobile survey was undertaken through 2019 in the Ebro Delta as a part of the ClimaDat Network project (DEC station, www.climadat.es), to study the effect of land management in the spatial and temporal variability of greenhouse gases and NH<sub>3</sub> concentrations. We are broadening the scope of a survey undertaken in 2012 (Àgueda et al. 2017). In the new survey we increased the total number of transects and longitude every three weeks during a year, starting in December 2018.</p><p>Whereas atmospheric NH<sub>3</sub> concentration links with diurnal and seasonal cycles, the distribution of CO<sub>2</sub> and CH<sub>4</sub> shows a combination of spatial and temporal variability.   Our aim is to understand how we can use wind trajectories to find the principal sources of atmospheric variability. That is, can wind direction improve our comprehension of metabolic processes occurring in paddy lands? In this work, we use wind trajectories as means of spatial classification, to explore the spatiotemporal dynamic affecting the potential of CO<sub>2</sub> and CH<sub>4</sub> atmospheric concentration. </p>


2015 ◽  
Vol 66 (1) ◽  
pp. 1 ◽  
Author(s):  
Damien Finn ◽  
Ram Dalal ◽  
Athol Klieve

Methane is a potent greenhouse gas with a global warming potential ~28 times that of carbon dioxide. Consequently, sources and sinks that influence the concentration of methane in the atmosphere are of great interest. In Australia, agriculture is the primary source of anthropogenic methane emissions (60.4% of national emissions, or 3 260 kt–1 methane year–1, between 1990 and 2011), and cropping and grazing soils represent Australia’s largest potential terrestrial methane sink. As of 2011, the expansion of agricultural soils, which are ~70% less efficient at consuming methane than undisturbed soils, to 59% of Australia’s land mass (456 Mha) and increasing livestock densities in northern Australia suggest negative implications for national methane flux. Plant biomass burning does not appear to have long-term negative effects on methane flux unless soils are converted for agricultural purposes. Rice cultivation contributes marginally to national methane emissions and this fluctuates depending on water availability. Significant available research into biological, geochemical and agronomic factors has been pertinent for developing effective methane mitigation strategies. We discuss methane-flux feedback mechanisms in relation to climate change drivers such as temperature, atmospheric carbon dioxide and methane concentrations, precipitation and extreme weather events. Future research should focus on quantifying the role of Australian cropping and grazing soils as methane sinks in the national methane budget, linking biodiversity and activity of methane-cycling microbes to environmental factors, and quantifying how a combination of climate change drivers will affect total methane flux in these systems.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Hofmann ◽  
S. Mathesius ◽  
E. Kriegler ◽  
D. P. van Vuuren ◽  
H. J. Schellnhuber

AbstractIn Paris in 2015, the global community agreed to limit global warming to well below 2 $${}^{\circ }$$∘C, aiming at even 1.5 $${}^{\circ }$$∘C. It is still uncertain whether these targets are sufficient to preserve marine ecosystems and prevent a severe alteration of marine biogeochemical cycles. Here, we show that stringent mitigation strategies consistent with the 1.5 $${}^{\circ }$$∘C scenario could, indeed, provoke a critical difference for the ocean’s carbon cycle and calcium carbonate saturation states. Favorable conditions for calcifying organisms like tropical corals and polar pteropods, both of major importance for large ecosystems, can only be maintained if CO$${}_{2}$$2 emissions fall rapidly between 2025 and 2050, potentially requiring an early deployment of CO$${}_{2}$$2 removal techniques in addition to drastic emissions reduction. Furthermore, this outcome can only be achieved if the terrestrial biosphere remains a carbon sink during the entire 21st century.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 136-136
Author(s):  
Ridha Ibidhi ◽  
Tae Hoon Kim ◽  
Rajaraman Bharanidharan ◽  
Krishnaraj Thirugnanasambantham ◽  
Kyoung Hoon Kim

Abstract In the context of global climate change, carbon footprint (CF) becomes an important sustainability indicator for dairy production systems. To mitigation the CF of the dairy sector, insight into greenhouse gases (GHG) emissions from individual farms is required. The objective of this study was to determine the primary contributors to GHG emissions at the farm-gate level, expressed as a carbon dioxide equivalents (CO2-eq), to produce one kg of fat-and protein corrected milk (FPCM). Primary data about farms’ management and feeding practices were collected from twelve dairy farms that belong to Gyeonggi-do province, which represent the most important region for milk production in South Korea. Allocation of GHG emissions between meat and milk was assessed as a physical allocation, 98% allocated to milk and 2% to meat (surplus of calves and culled cows). The CF of the evaluated farms averaged to 0.61 CO2-eq/kg of FPCM and ranged from 0.49 to 0.78 CO2-eq/kg of FPCM. Results indicated that the largest source of GHG comes mostly from enteric fermentation (83%), followed by manure management (6%), manure and fertilizer land application (8%) and energy consumption (3%). By type of gas emitted, methane accounted for 86% of total emissions, originating from enteric fermentation and manure management. Nitrous oxide and carbon dioxide accounted for 11.6 % and 2.8% of total GHG emissions, respectively. Lactating cows contributed by 70% of total GHG emissions, whereas dry cows, heifers and calves contributed by 5, 22 and 3%, respectively. Differences in GHG emissions from the evaluated farms could be explained by differences in feed quality and management practices through manure and fertilizers application on cropland. This study contributes to identify the main sources of GHG production in dairy farms, which can help to define mitigation strategies towards the transition to neutral carbon emissions of the dairy sector.


2021 ◽  
Vol 48 (5) ◽  
pp. 328-342
Author(s):  
M. A Adeyemi ◽  
E. O. Akinfala

Greenhouse gases are becoming devastating on agriculture and environment because of its effect on climate and global warming. The aim of this review is to provide update on livestock greenhouse gases emission and rekindle available mitigation strategies. Recently, global warming and climate change have become one of the most discussed issues globally because of their negative effect on ecosystem worldwide. The livestock sub-sector as a major source of greenhouse gas emission, has been identified to contribute substantially to the recent rise in global warming and climate change. Livestock, most importantly ruminants plays a major role in the emission of methane, one of the potent greenhouse gases. This methane is usually released through enteric fermentation in animals and manure management system, though the latter account for smaller quantity. Estimate of methane emission inventory from livestock in Nigeria showed that 96.15 % of methane produced by livestock was by ruminants with cattle alone accounting for 74.06 %. With this background, strategies to date for reducing methane emissions should centre on ruminant. Efforts to reduce methane emissions from enteric fermentation generally focus on options for improving production efficiency. This has been demonstrated with intensive animal production systems. However, in Nigeria, this system has been successful only for non-ruminants while the extensive and semi extensive systems are being practiced for ruminants. In view of this, options for reducing emissions must be selected to be consistent with country-specific circumstances. Those circumstances should include animal management practices (including cultural traditions), nutrition and economic development priorities.     Les gaz à effet de serre deviennent dévastateurs de l'agriculture et de l'environnement en raison de son effet sur le climat et le réchauffement de la planète. L'objectif de cet examen est de fournir une mise à jour sur les stratégies d'atténuation disponibles des gaz à effet de serre de bétail. Récemment, le réchauffement climatique et le changement climatique sont devenus l'une des questions les plus discutées à l'échelle mondiale en raison de leur effet négatif sur l'écosystème mondial. Le sous-secteur de l'élevage en tant que source majeure d'émissions de gaz à effet de serre, a été identifié pour contribuer de manière substantielle à la hausse récente du réchauffement de la planète et du changement climatique. Le bétail, plus important encore, les ruminants jouent un rôle majeur dans l'émission de méthane, l'un des gaz à effet de serre puissants. Ce méthane est généralement libéré par la fermentation entérique chez les animaux et le système de gestion de fumier, bien que ces derniers représentent une plus petite quantité. L'estimation des stocks d'émissions de méthane provenant du bétail au Nigéria a montré que 96,15% de méthane produites par le bétail étaient par des ruminants avec des bovins à eux-mêmes représentant 74,06%. Avec ce contexte, des stratégies à ce jour pour réduire les émissions de méthane doivent être centrées sur le ruminant. Les efforts visant à réduire les émissions de méthane de la fermentation entérique se concentrent généralement sur les options d'amélioration de l'efficacité de la production. Cela a été démontré avec des systèmes de production d'animaux intensifs. Cependant, au Nigéria, ce système n'a abouti que pour les non-ruminants tandis que les systèmes étendus et semi-étendus sont pratiqués pour les ruminants. Compte tenu de cela, les options de réduction des émissions doivent être sélectionnées pour être cohérentes avec des circonstances spécifiques à chaque pays. Ces circonstances devraient inclure des pratiques de gestion des animaux (y compris des traditions culturelles), des priorités de nutrition et de développement économique


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 313-313
Author(s):  
Xandra Christine A Meneses ◽  
Rachel M Park ◽  
Emily Ridge ◽  
Courtney L Daigle

Abstract Every organism has evolved patterned responses to its temporal and physical surroundings. Rhythmicity is a central regulator of life and a sentinel for animal health and metabolism, thus chronic stress and disease can disrupt behavioral patterns. Feedlot cattle may exhibit irregularities in circadian rhythms due to social, environmental, and nutritional stressors and may benefit from behavior-based management strategies. This study characterized the hourly behavioral patterns of feedlot cattle with and without environmental enrichment, established behavioral expectations for animal managers, and proposed practical interventions. Fifty-four crossbred steers were shipped to Texas A&M AgriLife Feedlot in Bushland, Texas, blocked by weight, and assigned to one of six pens (n = 9 steers/pen), half of which had a cattle brush and half did not. Frequency of headbutting, mounting, bar licking, tongue rolling, allogrooming, and brush usage was decoded from video recordings of cattle from 08:00h to 17:30h on d -2, -1, 0, 1, 2, 4, 8, 16, 32, and 64 relative to brush implementation. The impact of time (hour), treatment, and their interaction on cattle behavior were evaluated using PROC MIXED in SAS. Brush use (P < 0.0001), allogrooming (P < 0.0001), and mounting (P < 0.0001) were performed at lower frequencies during early hours of the day and at higher frequencies in the afternoon. Both tongue rolling (P < 0.0001) and bar licking (P < 0.0349) occurred most often during daylight hours in accordance with a diurnal pattern. Major periods of headbutting (P < 0.0001) were observed in the morning and afternoon. Behavioral expectations were characterized so that stockpeople could observe the prevalence of each behavior during morning, midday, and evening to facilitate the implementation of best management practices. Proposed interventions include medical treatment, modified pen surface or bunk management, altered stocking density, and/or introduction of environmental enrichment.


Sign in / Sign up

Export Citation Format

Share Document