scholarly journals Greenhouse gas emissions from livestock and mitigation options in Nigeria

2021 ◽  
Vol 48 (5) ◽  
pp. 328-342
Author(s):  
M. A Adeyemi ◽  
E. O. Akinfala

Greenhouse gases are becoming devastating on agriculture and environment because of its effect on climate and global warming. The aim of this review is to provide update on livestock greenhouse gases emission and rekindle available mitigation strategies. Recently, global warming and climate change have become one of the most discussed issues globally because of their negative effect on ecosystem worldwide. The livestock sub-sector as a major source of greenhouse gas emission, has been identified to contribute substantially to the recent rise in global warming and climate change. Livestock, most importantly ruminants plays a major role in the emission of methane, one of the potent greenhouse gases. This methane is usually released through enteric fermentation in animals and manure management system, though the latter account for smaller quantity. Estimate of methane emission inventory from livestock in Nigeria showed that 96.15 % of methane produced by livestock was by ruminants with cattle alone accounting for 74.06 %. With this background, strategies to date for reducing methane emissions should centre on ruminant. Efforts to reduce methane emissions from enteric fermentation generally focus on options for improving production efficiency. This has been demonstrated with intensive animal production systems. However, in Nigeria, this system has been successful only for non-ruminants while the extensive and semi extensive systems are being practiced for ruminants. In view of this, options for reducing emissions must be selected to be consistent with country-specific circumstances. Those circumstances should include animal management practices (including cultural traditions), nutrition and economic development priorities.     Les gaz à effet de serre deviennent dévastateurs de l'agriculture et de l'environnement en raison de son effet sur le climat et le réchauffement de la planète. L'objectif de cet examen est de fournir une mise à jour sur les stratégies d'atténuation disponibles des gaz à effet de serre de bétail. Récemment, le réchauffement climatique et le changement climatique sont devenus l'une des questions les plus discutées à l'échelle mondiale en raison de leur effet négatif sur l'écosystème mondial. Le sous-secteur de l'élevage en tant que source majeure d'émissions de gaz à effet de serre, a été identifié pour contribuer de manière substantielle à la hausse récente du réchauffement de la planète et du changement climatique. Le bétail, plus important encore, les ruminants jouent un rôle majeur dans l'émission de méthane, l'un des gaz à effet de serre puissants. Ce méthane est généralement libéré par la fermentation entérique chez les animaux et le système de gestion de fumier, bien que ces derniers représentent une plus petite quantité. L'estimation des stocks d'émissions de méthane provenant du bétail au Nigéria a montré que 96,15% de méthane produites par le bétail étaient par des ruminants avec des bovins à eux-mêmes représentant 74,06%. Avec ce contexte, des stratégies à ce jour pour réduire les émissions de méthane doivent être centrées sur le ruminant. Les efforts visant à réduire les émissions de méthane de la fermentation entérique se concentrent généralement sur les options d'amélioration de l'efficacité de la production. Cela a été démontré avec des systèmes de production d'animaux intensifs. Cependant, au Nigéria, ce système n'a abouti que pour les non-ruminants tandis que les systèmes étendus et semi-étendus sont pratiqués pour les ruminants. Compte tenu de cela, les options de réduction des émissions doivent être sélectionnées pour être cohérentes avec des circonstances spécifiques à chaque pays. Ces circonstances devraient inclure des pratiques de gestion des animaux (y compris des traditions culturelles), des priorités de nutrition et de développement économique

2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


2021 ◽  
Author(s):  
Moctar Dembélé ◽  
Mathieu Vrac ◽  
Natalie Ceperley ◽  
Sander J. Zwart ◽  
Josh Larsen ◽  
...  

Abstract. A comprehensive evaluation of the impacts of climate change on water resources of the West Africa Volta River basin is conducted in this study, as the region is expected to be hardest hit by global warming. A large ensemble of twelve general circulation models (GCM) from CMIP5 that are dynamically downscaled by five regional climate models (RCM) from CORDEX-Africa is used. In total, 43 RCM-GCM combinations are considered under three representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5). The reliability of each of the climate datasets is first evaluated with satellite and reanalysis reference datasets. Subsequently, the Rank Resampling for Distributions and Dependences (R2D2) multivariate bias correction method is applied to the climate datasets. The corrected simulations are then used as input to the fully distributed mesoscale Hydrologic Model (mHM) for hydrological projections over the twenty-first century (1991–2100). Results reveal contrasting changes in the seasonality of rainfall depending on the selected greenhouse gas emission scenarios and the future projection periods. Although air temperature and potential evaporation increase under all RCPs, an increase in the magnitude of all hydrological variables (actual evaporation, total runoff, groundwater recharge, soil moisture and terrestrial water storage) is only projected under RCP8.5. High and low flow analysis suggests an increased flood risk under RCP8.5, particularly in the Black Volta, while hydrological droughts would be recurrent under RCP2.6 and RCP4.5, particularly in the White Volta. Disparities are observed in the spatial patterns of hydroclimatic variables across climatic zones, with higher warming in the Sahelian zone. Therefore, climate change would have severe implications for future water availability with concerns for rain-fed agriculture, thereby weakening the water-energy-food security nexus and amplifying the vulnerability of the local population. The variability between climate models highlights uncertainties in the projections and indicates a need to better represent complex climate features in regional models. These findings could serve as a guideline for both the scientific community to improve climate change projections and for decision makers to elaborate adaptation and mitigation strategies to cope with the consequences of climate change and strengthen regional socio-economic development.


1998 ◽  
Vol 47 (2) ◽  
pp. 446-461 ◽  
Author(s):  
Colin Warbrick ◽  
Dominic McGoldrick ◽  
Peter G. G. Davies

The Third Conference of the Parties to the United Nations Framework Convention on Climate Change (Climate Change Convention) was held from 1 to 11 December 1997 at Kyoto, Japan. Significantly the States Parties to the Convention adopted a protocol (Kyoto Protocol) on 11 December 1997 under which industrialised countries have agreed to reduce their collective emissions of six greenhouse gases by at least 5 per cent by 2008–2012. Ambassador Raul Estrada-Oyuela, who had chaired the Committee of the Whole established by the Conference to facilitate the negotiation of a Protocol text, expressed the view that: “This agreement will have a real impact on the problem of greenhouse gas emissions. Today should be remembered as the Day of the Atmosphere.” This note seeks to outline in brief the science of climate change, and international activity to combat global warming prior to the Kyoto conference. It then attempts to analyse the terms of the Kyoto Protocol and to draw some conclusions on its significance.


2020 ◽  
Vol 1 (3) ◽  
Author(s):  
Ahmedin Abdurehman Musa

Understanding the interaction of livestock production and climate change is currently the main issue in global warming. This paper reviews the contribution of livestock production in greenhouse gas emission and its mitigation strategies. The potential contribution of individual large ruminants are 200-500 litters of methane per day while small ruminants produces 20-40 litters of methane per day. The major greenhouse gas related to livestock production are methane and nitrous oxide which contribute approximately about 14.5% global GHG emissions. Limiting emissions from livestock, without compromising food security, is an important limit greenhouse gas emissions. The main choices for reducing greenhouse gas emission in livestock production are more related to improving animal production. Mitigating emission of CH4 by means of improved management of biogas and manure, reducing CH4 emission from enteric fermentation through improved efficiency and diet, husbandry as well as genetic management are some of strategies used in mitigating enteric emission of methane from livestock. The other one is mitigating emission of nitrous oxide through more efficient use of nitrous fertilizer, proper manure management and by using different feed additives.


2019 ◽  
Vol 75 (3) ◽  
pp. 21-32
Author(s):  
Natalia Vasylieva

Greenhouse gas emission is a global ecological challenge since it affects climate change and complicates providing food security. Each country ought to care about mitigating Greenhouse gas emissions including CH4 and N2O originated from agriculture. In this context, first, the performed research focused on Ukrainian ranking among the world Greenhouse gas emitters offering a multi-criteria evaluation of total Greenhouse gas quantities in CO2 equivalent, those ones per capita and per km2 of countries’ land territories. These indictors were also applied to visual comparing involvement of Ukrainian economy and its agriculture in the international Greenhouse gas emissions. Second, to explore agricultural Greenhouse gas emission at the domestic level we studied regional contributions by basic source categories such as enteric fermentation, manure management, and synthetic fertilizers. The proposed horizontal and vertical analyses allow clarifying regional management priorities in reducing Greenhouse gas emissions. Third, for this purpose the conducted investigation specified the EU Member States which match Ukrainian condition by shares of Greenhouse gas emissions and outputs in animal and crop sectors. The found patterns will be the most reliable vectors of adopting effective agricultural practices beneficial for the environment protection and mitigating influence over climate change.


2021 ◽  
Vol 894 (1) ◽  
pp. 012005
Author(s):  
I Suryati ◽  
A Farindah ◽  
I Indrawan

Abstract Landfill is a place where waste reaches the final stage. The piles of waste can generate greenhouse gas emissions that cause global warming the potential of climate change. The greenhouse gas emission generates from the piles of waste is CH4 emission. The research purpose is to count CH4 emission in the waste landfill in Medan city located in Terjun, projection CH4 emission for ten years later is 2020-2029 and decisive the effort reduction of CH4 emission. The scenarios of reducing CH4 emission in Terjun waste landfill reduce the potential CH4 emission for ten years later. The calculation of CH4 emission from the piles of waste in Terjun waste landfill using FOD method (First Orde Decay) by IPCC (Intergovernmental Panel on Climate Change) in 2006. In 2019, CH4 emission in Terjun waste landfill was 12,350.750-ton CH4 and had an uplift in 2029 can reach 17,143.087-ton CH4. There are two scenarios for reducing CH4 emission in the Terjun waste landfill; the first is the processing of waste in the source (composting), and the second is reducing the waste by using incineration technology Terjun landfill. The first scenario (composting) can reduce CH4 emission by 14.80%. The second scenario can reduce by 63.37% the CH4 emission in Terjun waste landfill. The chosen alternative scenario for reducing CH4 in the Terjun waste landfill is the first scenario, the processing of waste in the source (composting).


2021 ◽  
Author(s):  
◽  
Mitchell Easter

<p>Climate change is a global issue requiring unified action. Methane gas is a major component of greenhouse gas emissions contributing to global warming. This project is exploring the commercial potential of Pastoral Greenhouse Gas Research Consortium (PGgRc) developed technologies designed to mitigate the largest source of agricultural methane emissions. These technologies are methane vaccines and inhibitors targeting emissions from enteric fermentation in ruminant livestock. The two technologies share functional aspects but require different administration and upkeep.  As novel technologies designed for a developing market the commercial potential of PGgRc’s methane vaccines and inhibitors is uncertain. To validate the potential methane mitigation products this project focuses on farmer adoption and interaction with the technologies. Interviews with farmers around New Zealand have been used to identify the strengths and weaknesses of methane vaccines and inhibitors from the perspective of the end user.  A thematic analysis of the transcribed data highlighted various concerns among the participating farmers and provides a map of areas needing further investigation when moving forward with developing the technologies. Of key importance was the value methane vaccines and inhibitors offered the participants. Currently, methane mitigation offers no financial benefits to participants and good feelings about acting against climate change are not substantial enough to mitigate purchase and administration costs.  There is potential that using PGgRc’s methane vaccines and inhibitors could improve livestock productivity, but it is yet to be verified based on current testing and development. Establishing that using the technologies leads to increased live weight gain or milk and wool production could provide profitability benefits that farmers would value. This hinges on any benefits providing substantial enough gains to the farmer to offset the purchase and administration costs.  If no productivity benefits are identified government regulations creating a methane cost or subsidising the technologies could be necessary for methane vaccines and inhibitors to have value within the agricultural sector. Alternatively, if consumer purchasing behaviour shifts in favour of low emissions products the agricultural sector will need to shift production methods to remain competitive in the new market environment.  PGgRc aims to employ a licensing business model using the methane vaccine and inhibitor IP they possess. Partnering with an experienced company would provide PGgRc with the market knowledge and manufacturing capabilities producing their technologies requires. As part of their development strategy they aim to develop their technology to a proof of concept stage before forming any production partnerships.  This project highlights the critical factors for successfully commercialising PGgRc’s technologies. It is designed to guide the continued development of the methane mitigation technologies and help shape PGgRc’s market approach.</p>


2011 ◽  
Vol 1 (2) ◽  
pp. 46 ◽  
Author(s):  
Kofo A Aderogba

Abstract The enhancement of the greenhouse effect in driving increases in temperature and many other changes associated with climate have become great concern to research. The objective of this paper is to estimate the amount of greenhouse gases in the atmosphere in Lagos Metropolis. Literatures on road and air travels were read; and also journal articles on pollution and greenhouse gases, global warming and climate change. Newspaper cuttings, magazines, and electronic media sources of data and information were used. Trends in the growth and development of railway locomotives, marine activities, vehicular movements and air travels in the metropolis were studied and correlated with the estimated greenhouse gases emitted. There is positive correlation. Vehicular movements and air travels have increased by over 50% in the last twenty years. Greenhouse gases are increasing by the day. There must be deliberate checks on gas emission from automobiles, plants and machineries and in the aviation industry.  The world is not at rest to arrest the effects of climate change and global warming.  Nigeria and Nigerians and particularly Lagosian, the government and research institutions should be parts of the efforts.   Key words: Greenhouse Gas, Emissions, Predicaments, Economic Value, Lagos Metropolis.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexandra M. Collins ◽  
Neal R. Haddaway ◽  
Biljana Macura ◽  
James Thomas ◽  
Nicola Randall ◽  
...  

Abstract Background Reducing greenhouse gas emissions is a vital step in limiting climate change and meeting the goals outlined in the COP 21 Paris Agreement of 2015. Studies have suggested that agriculture accounts for around 11% of total greenhouse gas emissions and the industry has a significant role in meeting international and national climate change reduction objectives. However, there is currently little consensus on the mechanisms that regulate the production and assimilation of greenhouse gases in arable land and the practical factors that affect the process. Practical advice for farmers is often overly general, and models based on the amount of nitrogen fertiliser applied, for example, are used despite a lack of knowledge of how local conditions affect the process, such as the importance of humus content and soil types. Here, we propose a systematic map of the evidence relating to the impact on greenhouse gas flux from the agricultural management of arable land in temperate regions. Methods Using established methods for systematic mapping in environmental sciences we will search for, collate and catalogue research studies relating to the impacts of farming in temperate systems on greenhouse gas emissions. We will search 6 bibliographic databases using a tested search string, and will hand search a web-based search engine and a list of organisational web sites. Furthermore, evidence will be sought from key stakeholders. Search results will then be screened for relevance at title, abstract and full text levels according to a predefined set of eligibility criteria. Consistency checking will be employed to ensure the criteria are being applied accurately and consistently. Relevant studies will then be subjected to coding and meta-data extraction, which will be used to populate a systematic map database describing each relevant study’s settings, methods and measured outcomes. The mapping process will help to identify knowledge gaps (subjects lacking in evidence warranting further primary research) and knowledge clusters (subjects with sufficient studies to allow a useful full systematic review), and will highlight best and suboptimal research methods.


Sign in / Sign up

Export Citation Format

Share Document