scholarly journals Evaluation of Euthanasia Methods on Behavioral and Physiological Responses of Newly Hatched Male Layer Chicks

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1802
Author(s):  
Xi Wang ◽  
Dan Zhao ◽  
Allison C. Milby ◽  
Gregory S. Archer ◽  
E. David Peebles ◽  
...  

Newly hatched male layer chicks are considered as “by-products” in the egg industry and must be humanely euthanized at the hatchery. Instantaneous mechanical destruction (maceration) is the predominant euthanasia method applied in poultry hatcheries and is approved by the American Veterinary Medical Association (AVMA). However, maceration is not perceived by the public to be a humane means of euthanasia. The effects of alternative euthanasia methods, including carbon dioxide (CO2) or nitrogen (N2) inhalation, and a commercial negative pressure stunning system on behavioral and physiological responses of day-of-hatch male layer chicks, were evaluated in a field trial. Chick behaviors, including ataxia, loss of posture, convulsions, cessation of vocalization, and cessation of movement, were monitored. Serum hormones were assessed at the end of each of the alternative euthanasia treatments, including a control group allowed to breathe normal atmospheric air. The N2 method induced unconsciousness and death later than the CO2 and negative pressure methods, and increased serum corticosterone concentrations of neonatal chicks. Carbon dioxide inhalation increased serotonin concentrations as compared to controls, as well as the N2 and the negative pressure methods. The behavioral and physical responses observed in this study suggest that both CO2 inhalation and negative pressure stunning can be employed to humanely euthanize neonatal male layer chicks.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Nanae Yatagai ◽  
Takumi Hasegawa ◽  
Rika Amano ◽  
Izumi Saito ◽  
Satomi Arimoto ◽  
...  

Introduction. In recent years, the tumour immunosuppressive mechanism has attracted attention as a cause of tumour chemoresistance. Although chemoresistance and immunosuppression of tumours have been reported to be associated with a hypoxic environment, effective treatments to improve hypoxia in tumours have not yet been established. We have previously applied carbon dioxide (CO2) to squamous cell carcinoma and have shown that improvement in local oxygenation has an antitumour effect. However, the effects of local CO2 administration on tumour immunosuppression, chemoresistance, and combination with chemotherapy are unknown. In this study, we investigated the effects of local CO2 administration on squamous cell carcinoma and the effects of combined use with chemotherapy, focusing on the effects on tumour immunosuppressive factors. Methods. Human oral squamous cell carcinoma (HSC-3) was transplanted subcutaneously into the back of a nude mouse, and CO2 and cisplatin were administered. After administration twice a week for a total of 4 times, tumours were collected and the expression of tumour immunosuppressive factors (PD-L1, PD-L2, and galectin-9) was evaluated using real-time polymerase chain reaction and immunostaining. Results. Compared with the control group, a significant decrease in the mRNA expression of PD-L1 was observed in both, CO2-treated and combination groups. Similarly, the expression of PD-L2 and galectin-9 decreased in the CO2-treated and combination groups. Furthermore, immunostaining also showed a significant decrease in the protein expression of tumour immunosuppressive factors in the CO2-treated and combination groups. Conclusion. It was confirmed that the tumour immunosuppressive factors decreased due to local CO2 administration to the mouse model. CO2 administration has the potential to improve the hypoxic environment in tumours, and combined use with chemotherapy may also improve tumour immunosuppression.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Dody Hidayat

Kebakaran dapat terjadi dimana saja salah satunya dapat terjadi di alat transportasi air yakni kapal. Kebakaran selalu menyebabkan hal-hal yang tidak diinginkan baik kerugian material maupun ancaman keselamatan jiwa manusia. Seiring dari kejadian tersebut musibah kecelakaan kapal yang disebabkan oleh bahaya kebakaran sangatlah mungkin terjadi. Salah satu yang dapat mencegah kejadian kebakaran pada kapal haruslah dapat mendeteksi dini kebakaran tersebut. Untuk mendeteksi dini terjadinya kebakaran dikapal maka dirancanglah sebuah alat proteksi kebakaran otomatisberbasis adruino. Dimana Arduino merupakan board yang memiliki sebuah mikrokontroller sebagai  otak kendali sistem. Sistem otomatisasi atau controller tidak akan terlepas dengan apa yang disebut  dengan ‘sensor’. Sensor adalah sebuah alat untuk mendeteksi atau mengukut sesuatu yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan dan arus listrik. sistem yang dirancang ini dilengkapi dengan beberapa sensor diantaranya adalah sensor apiUV-Tron R2868, sensor asap MQ-2 dan kemudian sensor suhuDS18B20. Mikrokontroller sebagai pengendali akan merespon input yang berupa sensor tersebut ketika data yang dibaca oleh sensor mendeteksikebakaran diantaranya mendeteksi adanya asap, kemudian api dan suhu. Sebagai output dari sistem berupa racun api (fire extinguisher)dimana kandungan yang ada pada racun api tersebut berupa Dry Chemical Powder dan Carbon Dioxide (CO2) yang fungsinya digunakan untuk memadamkan api serta dilengkapi buzzer sebagai alarm peringatan jika terjadi kebakaran. 


2012 ◽  
Author(s):  
William R. Howard ◽  
Brian Wong ◽  
Michelle Okolica ◽  
Kimberly S. Bynum ◽  
R. A. James

2020 ◽  
Vol 25 (44) ◽  
pp. 4656-4661 ◽  
Author(s):  
Nikolaos Patelis ◽  
Mikes Doulaptsis ◽  
Stylianos Kykalos ◽  
Eleftherios Spartalis ◽  
Anastasios Maskanakis ◽  
...  

Background: Carbon dioxide (CO2) exists in nature around us. In the middle of the 20th century, the intraluminal injection of CO2 demonstrated similar results to those of Digital Subtraction Angiography (DSA) with an iodinated contrast agent (ICA). Since then, the technology behind CO2 DSA has developed significantly. Objective: The aim of this study is to inform physicians about the unique properties of CO2 and its physiology after intraluminal injection. Methods: An extensive search for English literature on the properties of CO2 and the physiology of intraluminal administration was conducted using Pubmed. Results: There is sufficient literature on the properties of CO2 and the physiology of CO2 DSA. A review of this literature explains what happens to the human organism after the injection of CO2. Conclusions: There is enough evidence that CO2 DSA is both effective, diagnostic and safe, but the properties of CO2 should be taken under consideration as complications occur, although rarely.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Leela Goel ◽  
Huaiyu Wu ◽  
Bohua Zhang ◽  
Jinwook Kim ◽  
Paul A. Dayton ◽  
...  

AbstractOne major challenge in current microbubble (MB) and tissue plasminogen activator (tPA)-mediated sonothrombolysis techniques is effectively treating retracted blood clots, owing to the high density and low porosity of retracted clots. Nanodroplets (NDs) have the potential to enhance retracted clot lysis owing to their small size and ability to penetrate into retracted clots to enhance drug delivery. For the first time, we demonstrate that a sub-megahertz, forward-viewing intravascular (FVI) transducer can be used for ND-mediated sonothrombolysis, in vitro. In this study, we determined the minimum peak negative pressure to induce cavitation with low-boiling point phase change nanodroplets and clot lysis. We then compared nanodroplet mediated sonothrombolysis to MB and tPA mediate techniques. The clot lysis as a percent mass decrease in retracted clots was 9 ± 8%, 9 ± 5%, 16 ± 5%, 14 ± 9%, 17 ± 9%, 30 ± 8%, and 40 ± 9% for the control group, tPA alone, tPA + US, MB + US, MB + tPA + US, ND + US, and ND + tPA + US groups, respectively. In retracted blood clots, combined ND- and tPA-mediated sonothrombolysis was able to significantly enhance retracted clot lysis compared with traditional MB and tPA-mediated sonothrombolysis techniques. Combined nanodroplet with tPA-mediated sonothrombolysis may provide a feasible strategy for safely treating retracted clots.


Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 56
Author(s):  
Tassahil Messas ◽  
Achraf Messas ◽  
George Kroumpouzos

Genitourinary syndrome of menopause (GSM) causes significant symptomatic aggravation that affects the quality of life (QoL). Vulvovaginal atrophy (VVA), the hallmark of GSM, is managed with topical non-hormonal therapy, including moisturizers and lubricants, and topical estrogen application. Patients not responding/being unsatisfied with previous local estrogen therapies are candidates for a noninvasive modality. Carbon dioxide (CO2) laser therapy, especially the fractionated type (FrCO2), has drawn considerable attention over the past two decades as a non-invasive treatment for GSM. This systematic review describes the accumulated evidence from 40 FrCO2 laser studies (3466 participants) in GSM/VVA. MEDLINE, Scopus and Cochrane databases were searched through April 2021. We analyze the effects of FrCO2 laser therapy on symptoms, sexual function, and QoL of patients with GSM/VVA. As shown in this review, FrCO2 laser therapy for GSM shows good efficacy and safety. This modality has the potential to advance female sexual wellness. Patient satisfaction was high in the studies included in this systematic review. However, there is a lack of level I evidence, and more randomized sham-controlled trials are required. Furthermore, several clinical questions, such as the number of sessions required that determine cost-effectiveness, should be addressed. Also, whether FrCO2 laser therapy may exert a synergistic effect with systemic and/or local hormonal/non-hormonal treatments, energy-based devices, and other modalities to treat GMS requires further investigation. Lastly, studies are required to compare FrCO2 laser therapy with other energy-based devices such as erbium:YAG laser and radiofrequency.


Endoscopy ◽  
2021 ◽  
Author(s):  
Shaopeng Liu ◽  
Tao Dong ◽  
Yupeng Shi ◽  
Hui Luo ◽  
Xianmin Xue ◽  
...  

<b>Background and study aims</b> Single-balloon enteroscopy (SBE) is a valuable but difficult modality for the diagnosis and treatment of small-bowel diseases. The water exchange (WE) method has the advantage of facilitating intubation during colonoscopy. Here, we evaluated the effects of WE on procedure-related variables related to SBE. <b>Patients and methods</b> This randomized controlled trial was conducted in a tertiary-care referral center in China. Patients with attempt at total enteroscopy (ATE) were randomly allocated to undergo WE-assisted (WE group) or carbon dioxide-insufflated enteroscopy (CO<sub>2</sub> group). All patients were planned to undergo both antegrade and retrograde procedures. The primary outcome was the total enteroscopy rate (TER). Secondary outcomes included maximal insertion depth, positive findings, procedural time and adverse events. <b>Results</b> In total, 110 patients were enrolled, with 55 in each group. Baseline characteristics between the two groups were comparable. TER was achieved in 58.2% (32/55) of the WE group and 36.4% (20/55) of the control group (p=0.022). The estimated intubation depth was 521.2±101.4 cm in the WE group and 481.6±95.2 cm in the CO<sub>2</sub> group (p=0.037). The insertion time was prolonged in the WE group compared with CO<sub>2</sub> group (178.9±45.1 min vs. 154.2±27.6 min, p<0.001). Endoscopic findings and adverse events were comparable between the two groups. <b>Conclusions</b> The WE method improved TER and increased intubation depth during SBE. The use of WE did not increase complications of enteroscopy. Clinical trial registation: https://clinicaltrials.gov/, NCT01942863.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1711
Author(s):  
Mohamed Ahmed Khaireh ◽  
Marie Angot ◽  
Clara Cilindre ◽  
Gérard Liger-Belair ◽  
David A. Bonhommeau

The diffusion of carbon dioxide (CO2) and ethanol (EtOH) is a fundamental transport process behind the formation and growth of CO2 bubbles in sparkling beverages and the release of organoleptic compounds at the liquid free surface. In the present study, CO2 and EtOH diffusion coefficients are computed from molecular dynamics (MD) simulations and compared with experimental values derived from the Stokes-Einstein (SE) relation on the basis of viscometry experiments and hydrodynamic radii deduced from former nuclear magnetic resonance (NMR) measurements. These diffusion coefficients steadily increase with temperature and decrease as the concentration of ethanol rises. The agreement between theory and experiment is suitable for CO2. Theoretical EtOH diffusion coefficients tend to overestimate slightly experimental values, although the agreement can be improved by changing the hydrodynamic radius used to evaluate experimental diffusion coefficients. This apparent disagreement should not rely on limitations of the MD simulations nor on the approximations made to evaluate theoretical diffusion coefficients. Improvement of the molecular models, as well as additional NMR measurements on sparkling beverages at several temperatures and ethanol concentrations, would help solve this issue.


Sign in / Sign up

Export Citation Format

Share Document