scholarly journals Impact of Campylobacter spp. on the Integrity of the Porcine Gut

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2742
Author(s):  
Alexandra Rath ◽  
Silke Rautenschlein ◽  
Janina Rzeznitzeck ◽  
Gerhard Breves ◽  
Marion Hewicker-Trautwein ◽  
...  

Campylobacter (C.) is the most common food-borne zoonosis in humans, which mainly manifests with watery to bloody diarrhoea. While C. jejuni is responsible for most cases of infection, C. coli is less frequently encountered. The object of the study was to prove the clinical impact of mono- and co-colonisation of C. coli and C. jejuni on weaned piglets in an infection model and to investigate the impact on transepithelial transport processes in the jejunum and caecum. At an age of eight weeks, eight pigs were infected with C. coli (ST-5777), 10 pigs with C. jejuni (ST‑122), eight pigs with both strains, and 11 piglets served as control. During the four-week observation period, no clinical signs were observed. During dissection, both strains could be isolated from the jejunum and the caecum, but no alteration of the tissue could be determined histopathologically. Mono-infection with C. jejuni showed an impact on transepithelial ion transport processes of the caecum. An increase in the short circuit current (Isc) was observed in the Ussing chamber resulting from carbachol- and forskolin-mediated Cl− secretion. Therefore, we speculate that caecal colonisation of C. jejuni might affect the transport mechanisms of the intestinal mucosa without detectable inflammatory reaction.

2010 ◽  
Vol 299 (1) ◽  
pp. R92-R100 ◽  
Author(s):  
Jens Berger ◽  
Martin Hardt ◽  
Wolfgang G. Clauss ◽  
Martin Fronius

A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl− uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na+/K+/2 Cl− cotransporter (NKCC) and HCO3−/Cl− anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl−-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl− gradient. Further, we were interested in the involvement of the HCO3−/Cl− anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (ISC). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO3− concentrations. Cl− secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO3−. These experiments indicate that the AE at least partially contributes to Cl− secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl− uptake, which contrasts with the common model for Cl− secretion in pulmonary epithelia.


2006 ◽  
Vol 74 (5) ◽  
pp. 2937-2946 ◽  
Author(s):  
A. Ghosh ◽  
D. R. Saha ◽  
K. M. Hoque ◽  
M. Asakuna ◽  
S. Yamasaki ◽  
...  

ABSTRACT Cholera toxin gene-negative Vibrio cholerae non-O1, non-O139 strain PL-21 is the etiologic agent of cholera-like syndrome. Hemagglutinin protease (HAP) is one of the major secretory proteins of PL-21. The mature 45-kDa and processed 35-kDa forms of HAP were purified in the presence and absence of EDTA from culture supernatants of PL-21. Enterotoxigenicities of both forms of HAP were tested in rabbit ileal loop (RIL), Ussing chamber, and tissue culture assays. The 35-kDa HAP showed hemorrhagic fluid response in a dose-dependent manner in the RIL assay. Histopathological examination of 20 μg of purified protease-treated rabbit ileum showed the presence of erythrocytes and neutrophils in the upper part of the villous lamina propria. Treatment with 40 μg of protease resulted in gross damage of the villous epithelium with inflammation, hemorrhage, and necrosis. The 35-kDa form of HAP, when added to the lumenal surface of rat ileum loaded in an Ussing chamber, showed a decrease in the intestinal short-circuit current and a cell rounding effect on HeLa cells. The mature 45-kDa form of HAP showed an increase in intestinal short-circuit current in an Ussing chamber and a cell distending effect on HeLa cells. These results show that HAP may play a role in the pathogenesis of PL-21.


2013 ◽  
Vol 448-453 ◽  
pp. 1732-1737
Author(s):  
Liu Bin ◽  
Hong Wei Cui ◽  
Li Xu ◽  
Kun Wang ◽  
Zhu Zhan ◽  
...  

This paper analyses the characteristics of large-scale offshore wind farm collection network and the impact of the medium voltage collection system optimization,while from the electrical technology point,it proposes the short circuit current of the collection network computational model and algorithms,based on the principle of equivalent circuit.Taking a wind power coolection system planned for a certain offshore wind farm planning for example, the validity of the model and algorithm is verified.


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 351 ◽  
Author(s):  
C. Tse ◽  
Julie In ◽  
Jianyi Yin ◽  
Mark Donowitz ◽  
Michele Doucet ◽  
...  

One of the characteristic manifestations of Shiga-toxin-producing Escherichia coli (E. coli) infection in humans, including EHEC and Enteroaggregative E. coli O104:H4, is watery diarrhea. However, neither Shiga toxin nor numerous components of the type-3 secretion system have been found to independently elicit fluid secretion. We used the adult stem-cell-derived human colonoid monolayers (HCM) to test whether EHEC-secreted extracellular serine protease P (EspP), a member of the serine protease family broadly expressed by diarrheagenic E. coli can act as an enterotoxin. We applied the Ussing chamber/voltage clamp technique to determine whether EspP stimulates electrogenic ion transport indicated by a change in short-circuit current (Isc). EspP stimulates Isc in HCM. The EspP-stimulated Isc does not require protease activity, is not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated, but is partially Ca2+-dependent. EspP neutralization with a specific antibody reduces its potency in stimulating Isc. Serine Protease A, secreted by Enteroaggregative E. coli, also stimulates Isc in HCM, but this current is CFTR-dependent. In conclusion, EspP stimulates colonic CFTR-independent active ion transport and may be involved in the pathophysiology of EHEC diarrhea. Serine protease toxins from E. coli pathogens appear to serve as enterotoxins, potentially significantly contributing to watery diarrhea.


1997 ◽  
Vol 273 (5) ◽  
pp. G1127-G1134 ◽  
Author(s):  
W. MacNaughton ◽  
B. Moore ◽  
S. Vanner

This study characterized tachykinin-evoked secretomotor responses in in vitro submucosal and mucosal-submucosal preparations of the guinea pig ileum using combined intracellular and Ussing chamber recording techniques. Superfusion of endogenous tachykinins substance P (SP), neurokinin A (NKA), and neurokinin B depolarized single submucosal neurons and evoked increased short-circuit current ( I sc) responses in Ussing chamber preparations. The NK1-receptor agonist [Sar9,Met(O2)11]SP [50% effective concentration (EC50) = 2 nM] depolarized all submucosal neurons examined. The NK3-receptor agonist senktide (EC50 = 20 nM) depolarized ∼50% of neurons examined, whereas the NK2-receptor agonist [Ala5,β-Ala8]NKA-(4—10) had no effect on membrane potential. [Sar9,Met(O2)11]SP and senktide evoked similar increases in I sc that were tetrodotoxin sensitive (91 and 100%, respectively) and were selectively blocked by the NK1antagonist CP-99,994 and the NK3antagonist SR-142801, respectively. Capsaicin-evoked increases in I sc were significantly inhibited (54%, P < 0.05) by CP-99,994 but not by SR-142801. Neither antagonist inhibited slow excitatory postsynaptic potentials. These findings suggest that tachykinin-evoked secretion in guinea pig ileum is mediated by NK1 and NK3 receptors on submucosal secretomotor neurons and that capsaicin-sensitive nerves release tachykinin(s) that activate the NK1 receptors.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sarina Koehler ◽  
Andrea Springer ◽  
Nicole Issel ◽  
Stefanie Klinger ◽  
Christina Strube ◽  
...  

Abstract Background The roundworm Ascaris suum is one of the parasites with the greatest economic impact on pig farming. In this context, lower weight gain is hypothesized to be due to decreased nutrient absorption. This study aims at characterizing the effects of A. suum infection on intestinal nutrient transport processes and potential molecular mechanisms. Methods Three groups of six piglets each were infected orally (10,000 embryonated A. suum eggs) in a single dose (“single infection”). Another three groups were infected orally (1000 embryonated eggs) for 10 consecutive days (“trickle infection”). Animals were necropsied 21, 35 and 49 days post-infection (dpi). Three groups served as respective controls. The Ussing chamber technique was applied for the functional characterization of small intestinal tissues [short-circuit currents (Isc) as induced by glucose, alanine and peptides; 3H-glucose net flux rates; tissue conductance (Gt)]. Transcription and expression levels of relevant cytokines and nutrient transporters were evaluated (qPCR/western blot). Results Peptide- and alanine-induced changes in Isc were significantly decreased in the jejunum and ileum of the trickle-infected group at 49 dpi and in the ileum of the single-infected group at 49 dpi. No significant differences regarding glucose transport were observed between the Ascaris-infected groups and the control group in Ussing chamber experiments. Transcription levels of the glucose and peptide transporters as well as of selected transcription factors (transcription of signal transducer and activator of transcription 6 [STAT6] and hypoxia-inducible factor 1-alpha [Hif-1α]) were significantly increased in response to both infection types after some periods. The transcription of interleukins 4 and 13 varied between decrease and increase regarding the respective time points, as did the protein expression of glucose transporters. The expression of the peptide transporter PepT1 was significantly decreased in the ileal single-infected group at 35 dpi. Hif-1α was significantly increased in the ileal tissue from the single-infected group at 21 dpi and in the trickle-infected group at 35 dpi. The expression levels of Na+/K+-ATPase and ASCT1 remained unaffected. Conclusions In contrast to the current hypothesis, these results indicate that the nutrient deprivation induced by A. suum cannot be explained by transcriptional or expression changes alone and requires further studies. Graphical abstract


Author(s):  
Mandava Mohana Rao ◽  
Moutusi Paul ◽  
H.S. Jain

Fault-proof earthing switches are one of the important modules of a gas insulated substation, as it enables make at 100 percent short circuit current, which is functionally different from maintenance earthing switches. The fault-proof earthing switch shall be designed to make and break electro-magnetically and electro-statically induced currents as per IEC-62271-102. The paper discusses the impact of “test circuit configurations and voltage” on test parameters for gas insulated fault-proof earthing switch utilizing simulation with PSCAD software. Authors record the development of a 145 kV gas insulated fault proof earthing switch by considering novel design features like minimum arcing/pre-arcing time, effective current transfer from arcing contact to ground terminal, etc. The development has been evaluated successfully for electro-magnetically and electro-statically induced current duties as per IEC. Finally, design parameters to be considered for ensuring reliable performance during induced current switching from fault-proof earthing switches are also discussed.


1976 ◽  
Vol 231 (6) ◽  
pp. 1866-1874 ◽  
Author(s):  
LJ Cruz ◽  
TU Biber

Na+ entry across the outer surface of frog skin and transepithelial Na transport were studied simultaneously at different [Na] in either the presence or absence of novobiocin by direct measurements of J12 (unidirectional uptake) and Io (short-circuit current). J12 consisted of two components: one linear, the other saturable. The kinetic parameters of the saturating components in controls were close to the kinetic parameters of overall transepithelial transport (Jm12 = 1.68+/-0.13 mleq cm-2h-1; Io =1.80+/-0.14 mueq cm-2h-1. K12 = 6.02+/-1.27 mM;Kio=6.12+/-1.33 mM). Novobiocin significantly augmented net transepithelial Na transport by increasing J13. J31 remained unaffected. A 1:1 relationship between the saturating component of J12 and Io was observed in both treated and untreated skins at all [Na] tested. (Jm12Iom, k12, and Kio were significantly larger in treated skins, but despite very drastic changes in transport rates, a close correlation between kinetic parameters of entry step and transepithelial transport was maintained. This suggests that the kinetics of transepithelial transport may simply reflect those of the rate-limiting step: the Na entry across the outer barrier of the skin. The results indicate that the linear component of J12 is not involved in transepithelial transport kinetics.


1991 ◽  
Vol 261 (1) ◽  
pp. G166-G170 ◽  
Author(s):  
Y. F. Li ◽  
N. W. Weisbrodt ◽  
Y. Harari ◽  
F. G. Moody

A technique that allows the simultaneous monitoring of epithelial and smooth muscle function was developed and used to study rat small intestine in vitro. A Ussing chamber was modified so that a strain gauge force transducer could be sewn to the serosal surface of an intestinal segment clamped in the chamber. The apparatus was used to monitor short-circuit current, potential difference, and resistance across the segment, and contractions of the longitudinal layer of the muscularis externa. Both spontaneous activity and responses to the application of carbachol were recorded. Carbachol applied to the serosal side induced dose-dependent increases in both short-circuit current and contractile force. The median effective doses of the two responses differed, with contractions being more sensitive to the drug. Carbachol applied to the mucosal side induced no changes in either epithelial or contractile activities. The ability of the serosal strain gauge transducer to monitor contractions faithfully was tested in an organ bath in which the gut segment was attached to an external force-displacement transducer. There was a close correlation between the dose-dependent increase in force in response to carbachol measured by the serosal transducer and that measured by the force-displacement transducer (r = 0.988). Thus our technique can be used to study simultaneously epithelial and smooth muscle functions of the intestine.


Sign in / Sign up

Export Citation Format

Share Document