scholarly journals Effect of Heat Stress on Bovine Mammary Cellular Metabolites and Gene Transcription Related to Amino Acid Metabolism, Amino Acid Transportation and Mammalian Target of Rapamycin (mTOR) Signaling

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3153
Author(s):  
Lin Fu ◽  
Li Zhang ◽  
Li Liu ◽  
Heng Yang ◽  
Peng Zhou ◽  
...  

Heat stress (HS) is one of the most serious factors to negatively affect the lactation performance of dairy cows. Bovine mammary epithelial cells are important for lactation. It was demonstrated that HS decreases the lactation performance of dairy cows, partly through altering gene expression within bovine mammary epithelial tissue. However, the cellular metabolism mechanisms under HS remains largely unknown. The objective of this study was to determine whether HS induced changes in intracellular metabolites and gene transcription related to amino acid metabolism, amino acid transportation and the mTOR signaling pathway. Immortalized bovine mammary epithelial cell lines (MAC-T cells, n = 5 replicates/treatment) were incubated for 12 h at 37 °C (Control group) and 42 °C (HS group). Relative to the control group, HS led to a greater mRNA expression of heat shock protein genes HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A. Compared with the control group, metabolomics using liquid chromatography tandem–mass spectrometry identified 417 differential metabolites with p < 0.05 and a variable importance in projection (VIP) score >1.0 in the HS group. HS resulted in significant changes to the intracellular amino acid metabolism of glutathione, phenylalanine, tyrosine, tryptophan, valine, leucine, isoleucine, arginine, proline, cysteine, methionine, alanine, aspartate and glutamate. HS led to a greater mRNA expression of the amino acid transporter genes SLC43A1, SLC38A9, SLC36A1, and SLC3A2 but a lower mRNA expression of SLC7A5 and SLC38A2. Additionally, HS influenced the expression of genes associated with the mTOR signaling pathway and significantly upregulated the mRNA expression of mTOR, AKT, RHEB, eIF4E and eEF2K but decreased the mRNA expression of TSC1, TSC2 and eEF2 relative to the control group. Compared with the control group, HS also led to greater mRNA expression of the CSN1S2 gene. Overall, our study indicates that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS.

2021 ◽  
Author(s):  
Yuanbo Liu

Abstract Background Primary central nervous system lymphoma (PCNSL) is a specific subtype of non-Hodgkin lymphoma that is highly invasive and confined to the central nervous system (CNS). The vast majority of PCNSLs are diffuse large B-cell lymphomas (DLBCLs). PCNSL is a highly heterogeneous disease, and its pathogenesis has not yet been fully elucidated. Further studies are needed to guide individualized therapy and improve the prognosis. Methods In this study, we detected 1) the expression of p-AKT, p-mTOR, p-S6 and p-4E-BP1 by immunohistochemistry (IHC) and Western blotting, 2) the mRNA expression by real-time qPCR and 3) the deletion of PTEN gene by immunofluorescence in situ hybridization (FISH) in order to investigate the activation status of the PI3K/AKT/mTOR signaling pathway in PCNSL. Samples of reactive hyperplasia lymphnods were used as the control group. The correlations between the clinical characteristics and prognosis of PCNSL patients and the expression of p-AKT, p-mTOR, p-S6 and p-4E-BP1 and the deletion of PTEN were assessed. Results The IHC results showed that the positive expression rates of p-AKT, p-mTOR, p-S6 and p-4E-BP1 in PCNSL were significantly higher in the PCNSL group than in the control group (P < 0.05). The relative mRNA expression level of MTOR in PCNSL samples was significantly increased (P = 0.013). Correlation analysis revealed that the expression of p-mTOR was correlated with that of p-AKT, p-S6, p-4E-BP1. PTEN deletion was found in 18.9% of PCNSL samples and was correlated with the expression of p-AKT (P = 0.031). Correlation analysis revealed that the PCNSL relapse rate in the p-mTOR-positive group was 64.5%, significantly higher than that in the negative group (P = 0.001). Kaplan-Meier survival analysis showed inferior progression-free survival (PFS) in the p-mTOR- and p-S6-positive groups (P = 0.002 and 0.009, respectively), and PTEN deletion tended to be related to shorter overall survival (OS) (P = 0.072). Cox regression analysis revealed p-mTOR expression as an independent prognostic factor for a shorter PFS (hazard ratio (HR) = 7.849, P = 0.046). Conclusions Our results suggest that the PI3K/AKT/mTOR signaling pathway is aberrantly activated in PCNSL and associated with a poor prognosis, which might indicate new therapeutic targets and prognostic factors.


1994 ◽  
Vol 267 (5) ◽  
pp. E672-E679 ◽  
Author(s):  
L. J. Wykes ◽  
J. D. House ◽  
R. O. Ball ◽  
P. B. Pencharz

Low tyrosine solubility in total parenteral nutrition (TPN) solutions complicates meeting the aromatic amino acid needs of infants. This study compared the effectiveness of two tyrosine precursors to supply the aromatic amino acid needs of TPN-fed neonatal piglets with a control group in which total aromatic acid needs were met by the addition of phenylalanine (Phe). Eighteen 3-day-old male Yorkshire piglets (6/group) received TPN for 8 days by central line. The solution was supplemented with Phe or one of the following two tyrosine precursors: N-acetyltyrosine (N-AcTyr) or glycyltyrosine (GlyTyr). Aromatic amino acid metabolism, growth, and nitrogen utilization were measured. Average amino acid and energy intakes were 14.6 g.kg-1.day-1 and 1,050 kJ.kg-1.day-1. Nitrogen balance and utilization were significantly higher (P < 0.05) in piglets in the control Phe group and on the GlyTyr regimen. The high urinary excretion of N-AcTyr (65%) confirms its low bioavailability. Flux and oxidation were significantly higher (P < 0.05) in the Phe group. High plasma Phe levels and excretion of Phe catabolites, as well as the high plasma tyrosine in the GlyTyr group, indicate that current strategies employed to meet the aromatic amino acid needs of neonates on TPN need further refinement.


2020 ◽  
Vol 103 (10) ◽  
pp. 9656-9666 ◽  
Author(s):  
Morteza H. Ghaffari ◽  
Hassan Sadri ◽  
Harald M. Hammon ◽  
Julia Steinhoff-Wagner ◽  
Nico Henschel ◽  
...  

Author(s):  
Dongmei Zhan ◽  
Tengyang Ni ◽  
Haibo Wang ◽  
Mengying Lv ◽  
Masataka Sunagawa ◽  
...  

Background: This study aimed to determine the effect and mechanism of Celastrol inhibiting the proliferation and decreases drug resistance of cisplatin-resistant gastric cancer cells. Objective: To explore the effect and mechanism of Celastrol on proliferation and drug resistance of human gastric cancer cisplatin-resistant cells SGC7901/DDP. Methods: The thiazole blue (MTT) method was used to detect the sensitivity of human gastric cancer cisplatin-resistant cells SGC7901/DPP to cisplatin and Celastrol to determine the Drug resistance index (DRI). According to the half inhibitory concentration (IC50) value, the action concentration of the following experimental drugs was set to reduce the cytotoxicity; Annexin V-FITC/PI double staining method was used to detect the apoptosis of SGC7901/DDP cells induced by Celastrol; Western Blot was used to examine the expression levels of P-glycoprotein (P-gp), Multidrug Resistance Associated Protein 1 (MRP1), Breast Cancer Resistance Associated Protein (Breast Cancer Resistance)-relative protein (BCRP), and mechanistic Target of Rapamycin (mTOR) pathway related proteins; Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the mRNA expression levels of P-gp, MRP1, and BCRP. Results: (1) Compared with the control group (We set the untreated group as the control group), the proliferation of the SGC7901/DPP cells was significantly inhibited after treating with 0.1-6.4μmol/L Celastrol in a time- and concentration-dependent manner (P<0.05). The Drug resistance index DRI of the SGC7901/DPP cells to DDP was 5.64. (2) Compared with the control group, Celastrol could significantly inhibit the proliferation and induce the apoptosis of the SGC7901/DPP cells (P<0.05). (3) The mRNA and protein expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly higher than those in the SGC7901 cells. However, after treating with Celastrol, the expression levels of P-gp, MRP1, and BCRP in the SGC7901/DPP cells were significantly reduced (P<0.05). (4) Compared with the control group, the Celastrol treatment also reduced the expression of the mTOR signaling pathway related proteins, suggesting that the mTOR signaling pathway may be involved in the process of Celastrol inhibiting the proliferation of the SGC7901/DDP cells and reducing their drug resistance. (5) Significantly, the combination of Celastrol and DDP reduced the expression of P-gp, MRP1, and BCRP in the SGC7901/DPP cells. Conclusion: Celastrol can inhibit the proliferation of the SGC7901/DDP cells, induce their apoptosis, and reduce the expression of drug resistance genes, probably by inhibiting the expression of the proteins related to the mTOR signaling pathway.


2021 ◽  
Author(s):  
Yanjuan Liu ◽  
Qi Zeng ◽  
Wen Xiao ◽  
Fang Chen ◽  
Lianhong Zou ◽  
...  

Abstract Xuebijing injection has been widely applied to treat sepsis. However, its roles in the dynamic change of metabolism in sepsis are still unknown. In our study, Gas chromatography-mass spectrometer (GC-MS) combined with multivariate statistical techniques was used to detect the metabolic change in septic rats with or without XBJ injection treatment. The KEGG pathway analysis was used to further analyze the related metabolic pathways in which the identified metabolites were involved. Based on the fold change, variable important in projection, and P value, we found 11, 33 and 26 differential metabolites in the sepsis group at 2, 6 and 12 hours post CLP, compared with the control group. Besides, we also found 32, 23 and 28 differential metabolites in the XBJ group at 2, 6 and 12 hours post CLP. The related pathways of differential metabolites were glycometabolism at 2h, glycometabolism and amino acid metabolism at 6h and amino acid metabolism at 12h post CLP in the sepsis group compared with the control group. Besides, glycometabolism, amino acid metabolism and lipid metabolism changed markedly after XBJ injection for 2 hours; while only amino acid metabolism changed significantly with the treatment of XBJ injection for 6 and 12 hours, compared with the sepsis group. Further analysis showed 3, 6 and 6 differential metabolites were overlapped in the sepsis group and XBJ group at 2, 6 and 12 hours post CLP. These identified differential metabolites were majorly involved in arginine and proline metabolism, suggesting that XBJ injection is capable of improving metabolic disorders in CLP-induced septic rat to a certain extent.


2019 ◽  
Vol 149 (6) ◽  
pp. 923-932 ◽  
Author(s):  
Hao Zhang ◽  
Along Peng ◽  
Yin Yu ◽  
Shuang Guo ◽  
Mengzhi Wang ◽  
...  

ABSTRACT Background Previous studies have revealed that dietary N-carbamylglutamate (NCG) and l-arginine (Arg) improve intestinal integrity, oxidative state, and immune function in Hu suckling lambs with intrauterine growth restriction (IUGR). Whether these treatments alter intestinal nutrient absorption is unknown. Objective The aim of this study was to determine the influence of dietary NCG and Arg treatment during the suckling period on intestinal amino acid (AA) absorption, alterations in the mechanistic target of rapamycin (mTOR) signaling pathway, and the abundance of AA and peptide transporters in IUGR lambs. Methods On day 7 after birth, 48 newborn Hu lambs were selected from a cohort of 424 twin lambs. Normal-birth-weight and IUGR Hu lambs were allocated randomly (n = 12/group) to a control (4.09 ± 0.12 kg), IUGR (3.52 ± 0.09 kg), IUGR + 0.1% NCG (3.49 ± 0.11 kg), or IUGR + 1% Arg (3.53 ± 0.10 kg). Results At day 28, compared with the IUGR group, the IUGR groups receiving NCG and Arg had 7.4% and 7.2% greater (P < 0.05) body weight, respectively. Compared with the IUGR group, the serum concentration of insulin was greater (P < 0.05) and the cortisol was lower (P < 0.05) in the IUGR groups receiving NCG and Arg. Compared with the IUGR group, the IUGR groups receiving NCG and Arg had 13.2%–62.6% greater (P < 0.05) serum concentrations of arginine, cysteine, isoleucine, and proline. Dietary NCG or Arg to IUGR lambs resulted in greater protein abundance (P < 0.05) of peptide transporter 1 (41.9% or 38.2%) in the ileum compared with the unsupplemented IUGR lambs, respectively. Furthermore, dietary NCG or Arg treatment normalized the IUGR-induced variation (P < 0.05) in the ileal ratio of phosphorylated mTOR to total mTOR protein. Conclusion Both NCG and Arg can help mitigate the negative effect of IUGR on nutrient absorption in neonatal lambs.


Sign in / Sign up

Export Citation Format

Share Document