Xuebijing Injection Affects the Dynamic Change of Metabolism in CLP-Induced Septic Rats

Author(s):  
Yanjuan Liu ◽  
Qi Zeng ◽  
Wen Xiao ◽  
Fang Chen ◽  
Lianhong Zou ◽  
...  

Abstract Xuebijing injection has been widely applied to treat sepsis. However, its roles in the dynamic change of metabolism in sepsis are still unknown. In our study, Gas chromatography-mass spectrometer (GC-MS) combined with multivariate statistical techniques was used to detect the metabolic change in septic rats with or without XBJ injection treatment. The KEGG pathway analysis was used to further analyze the related metabolic pathways in which the identified metabolites were involved. Based on the fold change, variable important in projection, and P value, we found 11, 33 and 26 differential metabolites in the sepsis group at 2, 6 and 12 hours post CLP, compared with the control group. Besides, we also found 32, 23 and 28 differential metabolites in the XBJ group at 2, 6 and 12 hours post CLP. The related pathways of differential metabolites were glycometabolism at 2h, glycometabolism and amino acid metabolism at 6h and amino acid metabolism at 12h post CLP in the sepsis group compared with the control group. Besides, glycometabolism, amino acid metabolism and lipid metabolism changed markedly after XBJ injection for 2 hours; while only amino acid metabolism changed significantly with the treatment of XBJ injection for 6 and 12 hours, compared with the sepsis group. Further analysis showed 3, 6 and 6 differential metabolites were overlapped in the sepsis group and XBJ group at 2, 6 and 12 hours post CLP. These identified differential metabolites were majorly involved in arginine and proline metabolism, suggesting that XBJ injection is capable of improving metabolic disorders in CLP-induced septic rat to a certain extent.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huanyong Li ◽  
Xiaoqian Tang ◽  
Xiuyan Yang ◽  
Huaxin Zhang

AbstractNitraria sibirica Pall., a typical halophyte that can survive under extreme drought conditions and in saline-alkali environments, exhibits strong salt tolerance and environmental adaptability. Understanding the mechanism of molecular and physiological metabolic response to salt stress of plant will better promote the cultivation and use of halophytes. To explore the mechanism of molecular and physiological metabolic of N. sibirica response to salt stress, two-month-old seedlings were treated with 0, 100, and 400 mM NaCl. The results showed that the differentially expressed genes between 100 and 400 mmol L−1 NaCl and unsalted treatment showed significant enrichment in GO terms such as binding, cell wall, extemal encapsulating structure, extracellular region and nucleotide binding. KEGG enrichment analysis found that NaCl treatment had a significant effect on the metabolic pathways in N. sibirica leaves, which mainly including plant-pathogen interaction, amino acid metabolism of the beta alanine, arginine, proline and glycine metabolism, carbon metabolism of glycolysis, gluconeogenesis, galactose, starch and sucrose metabolism, plant hormone signal transduction and spliceosome. Metabolomics analysis found that the differential metabolites between the unsalted treatment and the NaCl treatment are mainly amino acids (proline, aspartic acid, methionine, etc.), organic acids (oxaloacetic acid, fumaric acid, nicotinic acid, etc.) and polyhydric alcohols (inositol, ribitol, etc.), etc. KEGG annotation and enrichment analysis showed that 100 mmol L−1 NaCl treatment had a greater effect on the sulfur metabolism, cysteine and methionine metabolism in N. sibirica leaves, while various amino acid metabolism, TCA cycle, photosynthetic carbon fixation and sulfur metabolism and other metabolic pathways have been significantly affected by 400 mmol L−1 NaCl treatment. Correlation analysis of differential genes in transcriptome and differential metabolites in metabolome have found that the genes of AMY2, BAM1, GPAT3, ASP1, CML38 and RPL4 and the metabolites of L-cysteine, proline, 4-aminobutyric acid and oxaloacetate played an important role in N. sibirica salt tolerance control. This is a further improvement of the salt tolerance mechanism of N. sibirica, and it will provide a theoretical basis and technical support for treatment of saline-alkali soil and the cultivation of halophytes.


1994 ◽  
Vol 267 (5) ◽  
pp. E672-E679 ◽  
Author(s):  
L. J. Wykes ◽  
J. D. House ◽  
R. O. Ball ◽  
P. B. Pencharz

Low tyrosine solubility in total parenteral nutrition (TPN) solutions complicates meeting the aromatic amino acid needs of infants. This study compared the effectiveness of two tyrosine precursors to supply the aromatic amino acid needs of TPN-fed neonatal piglets with a control group in which total aromatic acid needs were met by the addition of phenylalanine (Phe). Eighteen 3-day-old male Yorkshire piglets (6/group) received TPN for 8 days by central line. The solution was supplemented with Phe or one of the following two tyrosine precursors: N-acetyltyrosine (N-AcTyr) or glycyltyrosine (GlyTyr). Aromatic amino acid metabolism, growth, and nitrogen utilization were measured. Average amino acid and energy intakes were 14.6 g.kg-1.day-1 and 1,050 kJ.kg-1.day-1. Nitrogen balance and utilization were significantly higher (P < 0.05) in piglets in the control Phe group and on the GlyTyr regimen. The high urinary excretion of N-AcTyr (65%) confirms its low bioavailability. Flux and oxidation were significantly higher (P < 0.05) in the Phe group. High plasma Phe levels and excretion of Phe catabolites, as well as the high plasma tyrosine in the GlyTyr group, indicate that current strategies employed to meet the aromatic amino acid needs of neonates on TPN need further refinement.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


2020 ◽  
Vol 17 (8) ◽  
pp. 753-765
Author(s):  
Rui He ◽  
Juntian Liu ◽  
Chang Huang ◽  
Jinyi Liu ◽  
Herong Cui ◽  
...  

Background: Alzheimer's disease (AD) is a common neurodegenerative disorder with the symptoms of cognitive impairment and decreased learning and memory abilities. Metabolomics can reflect the related functional status and physiological and pathological changes in the process of AD. Moxibustion is a unique method in traditional Chinese medicine, which has been used in the treatment and prevention of diseases for thousands of years. Methods: A total of 32 APP/PS1 mice were randomly divided into the model group, moxibustion group, moxa smoke group and smoke-free moxibustion group (n=8/group), using the random number table method, while eight C57BL/6 mice were used as the control group. The five groups were measured for 20 min/day, 6 days/week, for 4 weeks. After 4 weeks’ experiment, all the mice were placed in metabolic cages to collect urine continuously for 24 hours, for UPLC-MS analysis. Results: Principal component analysis (PCA) was used to identify the different metabolites among the five groups, and partial least squares discriminant analysis (PLS-DA) was performed to reveal the effects on the metabolic variance. Sixteen potential biomarkers were identified among the five groups, primarily related to amino acid metabolism, starch metabolism, sucrose metabolism, interconversion of pentose and glucuronate, and aminoacyl biosynthesis. There were 17 differences in the potential metabolites between the control and model groups, involving the metabolism of amino acid, purine, pyrimidine, nicotinic acid and nicotinamide, and biosynthesis of pantothenate and coenzyme A. Fifteen potential biomarkers were identified between the model and moxibustion groups, related to starch metabolism, sucrose metabolism, interconversion of pentose and glucuronate, glyoxylate, dicarboxylate anions and some amino acid metabolism. Conclusion: Moxibustion can regulate the metabolism of substance and energy by improving the synthesis and decomposition of carbohydrates and amino acids in APP/PS1 transgenic AD model mice.


2017 ◽  
Vol 44 (5) ◽  
pp. 1749-1761 ◽  
Author(s):  
Jie Yin ◽  
Hui Han ◽  
Yuying Li ◽  
Zhaojin Liu ◽  
Yurong Zhao ◽  
...  

Background/Aims: Our previous reports suggested that dietary supplementation with lysine influenced intestinal absorption and metabolism of amino acids. In this study, we further investigated the effect of lysine restriction (30%) on feed intake and we also tested the hypothesis that gut microbiome contributed to the potential mechanism of lysine restriction-mediated feeding behavior. Here, we profiled gut microbial communities by sequencing 16S ribosomal ribonucleic acid (rRNA) genes from gut samples as well as growth performance, serum hormones, and intestinal lysine transport in a piglet model. Results: Piglets preferred to the lysine restricted diet when giving three diets and the feed intake was markedly higher in the lysine-restricted group than that in the control group. Altered hormones (leptin, CCK, and ghrelin) might contribute to the feeding behavior caused by lysine restriction. Meanwhile, lysine transporting ability (SLC7A1 and SLC7A2 expression, intestinal electrophysiological changes, and amino acid pool in mesenteric vein) was decreased in response to lysine restriction. Through deep sequencing of bacterial rRNA markers, we observed that bacterial diversity was enhanced in the lysine-restricted group (Shannon H, PD, and Chao1). At the phylum level, lysine restriction enhanced gut Actinobacteria, Saccharibacteria, and Synergistetes abundances. At the family level, Moraxellaceae, Halomonadaceae, Shewanellaceae, Corynebacteriaceae, Bacillaceae, Comamonadaceae, Microbacteriaceae, Caulobacteraceae, and Synergistaceae abundances were increased in response to lysine restriction. Predictive functional profiling of microbial communities by PICRUSt also confirmed that dietary lysine restriction affected gut microbiome, which might further mediate amino acid metabolism, membrane transport, and endocrine system. Conclusion: Our results indicated that lysine restriction inhibited intestinal lysine transport and promoted feed intake, which might be associated with gut microbiome.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kexin Li ◽  
Yang Zheng ◽  
Xiaoming Wang

Hypoxia inducible factor (HIF) is one of the major transcription factors through which cells and tissues adapt to hypoxic-ischemic injury. However, the specific mechanism by which HIF regulates amino acid metabolism and its effect on neurons during hypoxic ischemia (HI) have remained unclear. This study analyzed the changes in cerebral metabolism of amino acids after HI by using 1H-MRS and investigated the relationship between the changes in cerebral metabolism of amino acids and HIF-1α as well as the potential effects on neurons. Newborn pigs were used as an HI model in this study. Twenty-eight newborn Yorkshire pigs (male, 1.0–1.5 kg) aged 3–5 days were selected and randomly divided into experimental groups tested at 0–2 h (n = 4), 2–6 h (n = 4), 6–12 h (n = 4), 12–24 h (n = 4), 24–48 h (n = 4), and 48–72 h (n = 4) after HI, and a control group (n = 4). After the modeling was completed, 1H-MRS imaging was conducted, followed by immunohistochemical staining of HIF-1α, NeuN, and doublecortin (DCX), and immunofluorescence of glutamic oxaloacetic transaminase (GOT)-1, GOT2, glutathione synthase (GS), glutamate-cysteine ligase catalytic subunit (GCLC), and glutamate-cysteine ligase modifier subunit (GCLM) in brain tissues. The expression of HIF-1α exhibited two increases after HI injury. The first time was opposite to the trends of change of GOT2, aspartic acid, and the number of neurons, while the second was consistent with these trends, suggesting that HIF-1α may have a two-way induction effect on neurons by regulating GOT2 after HI. HIF-1α was closely related to GCLM expression, and GSH level was correlated with the number of hippocampal neurons, indicating that HIF-1α may regulate GCLM to promote GSH synthesis and additionally play a neuroprotective role.


2019 ◽  
Author(s):  
S. Hiemer ◽  
S. Jatav ◽  
J. Jussif ◽  
J. Alley ◽  
S. Lathwal ◽  
...  

AbstractThe targeting of metabolic pathways is emerging as an exciting new approach for modulating immune cell function and polarization states. In this study, carbon tracing and systems biology approaches integrating metabolomic and transcriptomic profiling data were used to identify adaptations in human T cell metabolism important for fueling pro-inflammatory T cell function. Results of this study demonstrate that T cell receptor (TCR) stimulation leads to a significant increase in glucose and amino acid metabolism that trigger downstream biosynthetic processes. Specifically, increased expression of several enzymes such as CTPS1, IL4I1, and ASL results in the reprogramming of amino acid metabolism. Additionally, the strength of TCR signaling resulted in different metabolic enzymes utilized by T cells to facilitate similar biochemical endpoints. Furthermore, this study shows that cyclosporine represses the pathways involved in amino acid and glucose metabolism, providing novel insights on the immunosuppressive mechanisms of this drug. To explore the implications of the findings of this study in clinical settings, conventional immunosuppressants were tested in combination with drugs that target metabolic pathways. Results showed that such combinations increased efficacy of conventional immunosuppressants. Overall, the results of this study provide a comprehensive resource for identifying metabolic targets for novel combinatorial regimens in the treatment of intractable immune diseases.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 439.2-440
Author(s):  
T. Manolakou ◽  
I. Tsiara ◽  
D. Nikolopoulos ◽  
P. Garantziotis ◽  
D. Benaki ◽  
...  

Background:Metabolic pathways are important regulators of immune differentiation and activation in kidneys. Kidneys directly impact systemic metabolism, circulating metabolite levels, and express intrinsic metabolic activity. The integration of renal metabolomic and transcriptomic profiles may unravel unique gene-metabolite pairs of biological significance in lupus nephritis (LN).Objectives:To decipher gene-metabolite signatures at both pre-nephritic and nephritic stages of lupus.Methods:Kidneys were isolated and snap-frozen after perfusion from female NZB/NZW-F1 lupus mice at the pre-nephritic (3-month-old) and nephritic (6-month-old exhibiting ≥100 ng/dL of urine protein) stage of lupus (n=6/group). Age-matched female C57BL/6 mice were used as healthy controls. Sample extracts were used for RNA sequencing and 1H-NMR spectroscopy metabolic profiling. DESeq2 was used to identify differentially expressed genes. Univariate analysis was used to reveal metabolic differences characteristic for nephritis.Results:Comparative transcriptomic analyses uncovered multiple transcripts related to metabolic pathways: In pre-nephritic kidneys, lipid metabolism, cellular respiration, TCA cycle, amino acid metabolism processes were overrepresented in the upregulated genes while in nephritic kidneys, amino acid metabolism processes were overrepresented among the downregulated genes (Figure 1). 1H-NMR analysis revealed a total of 49 metabolites. Comparison of the metabolic levels of nephritic and pre-nephritic animals revealed that ADP, ATP, NAD+, Taurine and Myo-inositol decreased, while Thr increased significantly. The comparison to corresponding control animals, demonstrated that only myo-inositol increased significantly. Integration of kidney metabolomics and transcriptomics indicated the involvement of processes related to glutathione metabolism, leukocyte trans-endothelial migration and antigen presentation during the established renal disease stage.Conclusion:The combined transcriptomics and metabolomics analysis revealed metabolic derangements in lupus-affected kidneys both during subclinical and overt LN. Deregulated tissue-levels of taurine and myo-inositol at the subclinical stage of the disease suggest aberrant renal biochemistry preceding the development of overt LN that may directly impact systemic metabolism and circulating metabolite levels.Figure 1.Pathways linked to cell metabolism were overrepresented among 3-month upregulated and 6-month lupus mice (F1) downregulated DEGS (differentially expressed genes) compared to controls (C57BL/6).Acknowledgements:This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 742390).Disclosure of Interests:None declared


2001 ◽  
Vol 85 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Juan R. Viñ ◽  
Angel Giménez ◽  
Adelina Corbacho ◽  
Inmaculada R. Puertes ◽  
Elisa Borrás ◽  
...  

Whole-blood free amino acids were measured in a control group made up of eight healthy women fasted for 12 h and also in eight patients with acute pancreatitis, five patients with acute cholecystitis and seven patients with acute appendicitis. Blood was withdrawn immediately on admission to hospital and again 3 d later following a controlled peripheral parenteral nutrition diet; this is with the exception of the appendicitis group. L-CYSTATHIONINE AND l-methionine concentrations were significantly higher in pancreatitis and appendicitis patients when compared with controls. In the pancreatitis and cholecystitis patients, l-serine concentration was also significantly higher when compared with controls. The l-homocysteine concentration was significantly higher only in the appendicitis group when compared with the control group. l-Cystine concentration was unchanged in all the patients studied when compared with control subjects. The l-methionine : l-cystine ratio was significantly higher and the l-glutamine : l-cystine ratio was significantly lower in all the patients when compared with controls. The blood S-amino acid pattern reflects an impairment in liver transsulfuration pathway during acute abdominal processes. This work supports the idea that the l-methionine : l-cystine and l-glutamine : l-cystine ratios can be taken as good markers to evaluate the S-amino acid metabolism and suggests the importance of using N-acetylcysteine as a required nutrient in these situations.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3153
Author(s):  
Lin Fu ◽  
Li Zhang ◽  
Li Liu ◽  
Heng Yang ◽  
Peng Zhou ◽  
...  

Heat stress (HS) is one of the most serious factors to negatively affect the lactation performance of dairy cows. Bovine mammary epithelial cells are important for lactation. It was demonstrated that HS decreases the lactation performance of dairy cows, partly through altering gene expression within bovine mammary epithelial tissue. However, the cellular metabolism mechanisms under HS remains largely unknown. The objective of this study was to determine whether HS induced changes in intracellular metabolites and gene transcription related to amino acid metabolism, amino acid transportation and the mTOR signaling pathway. Immortalized bovine mammary epithelial cell lines (MAC-T cells, n = 5 replicates/treatment) were incubated for 12 h at 37 °C (Control group) and 42 °C (HS group). Relative to the control group, HS led to a greater mRNA expression of heat shock protein genes HSF1, HSPB8, HSPA5, HSP90AB1 and HSPA1A. Compared with the control group, metabolomics using liquid chromatography tandem–mass spectrometry identified 417 differential metabolites with p < 0.05 and a variable importance in projection (VIP) score >1.0 in the HS group. HS resulted in significant changes to the intracellular amino acid metabolism of glutathione, phenylalanine, tyrosine, tryptophan, valine, leucine, isoleucine, arginine, proline, cysteine, methionine, alanine, aspartate and glutamate. HS led to a greater mRNA expression of the amino acid transporter genes SLC43A1, SLC38A9, SLC36A1, and SLC3A2 but a lower mRNA expression of SLC7A5 and SLC38A2. Additionally, HS influenced the expression of genes associated with the mTOR signaling pathway and significantly upregulated the mRNA expression of mTOR, AKT, RHEB, eIF4E and eEF2K but decreased the mRNA expression of TSC1, TSC2 and eEF2 relative to the control group. Compared with the control group, HS also led to greater mRNA expression of the CSN1S2 gene. Overall, our study indicates that bovine mammary epithelial cells may have the ability to resist HS damage and continue milk protein synthesis partly through enhanced intracellular amino acid absorption and metabolism and by activating the mTOR signaling pathway during HS.


Sign in / Sign up

Export Citation Format

Share Document