scholarly journals Role of RND Efflux Pumps in Drug Resistance of Cystic Fibrosis Pathogens

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 863
Author(s):  
Viola Camilla Scoffone ◽  
Gabriele Trespidi ◽  
Giulia Barbieri ◽  
Samuele Irudal ◽  
Elena Perrin ◽  
...  

Drug resistance represents a great concern among people with cystic fibrosis (CF), due to the recurrent and prolonged antibiotic therapy they should often undergo. Among Multi Drug Resistance (MDR) determinants, Resistance-Nodulation-cell Division (RND) efflux pumps have been reported as the main contributors, due to their ability to extrude a wide variety of molecules out of the bacterial cell. In this review, we summarize the principal RND efflux pump families described in CF pathogens, focusing on the main Gram-negative bacterial species (Pseudomonas aeruginosa, Burkholderia cenocepacia, Achromobacter xylosoxidans, Stenotrophomonas maltophilia) for which a predominant role of RND pumps has been associated to MDR phenotypes.

2021 ◽  
Vol 43 (1) ◽  
Author(s):  
Maryam Fekri Soofi Abadi ◽  
Alireza Moradabadi ◽  
Reza Vahidi ◽  
Saeedeh Shojaeepour ◽  
Sara Rostami ◽  
...  

Abstract Background Pentavalent antimonial compounds are currently used to treat leishmaniasis and resistance to these drugs is a serious problem. Multidrug resistance protein is an efflux pump of the cell membrane that expels foreign compounds. This study designed to evaluate the mutations in the multi-drug resistance 1 (MDR1) gene, in biopsy specimens of Leishmania tropica, with high resolution melting (HRM) method. In this experimental study, genomic DNA was extracted from 130 patients with skin leishmaniasis. Then, nucleotide changes were investigated throughout the gene using HRM and sequencing methods. The samples categorized in 5 groups by differences in the melting temperature (Tm). Result The nucleotide changes analysis showed that 61% of the samples of different groups that were unresponsive to drug had mutations in the MDR1 gene, which were also confirmed by the sequencing method. These mutations can be one of the factors responsible for non-responsiveness to the treatment. Conclusion According to the findings, it seems that mutation in MDR1 gene could be responsible for drug resistance to pentavalent antimonial compounds. Furthermore, HRM method can be used to diagnose drug resistance in leishmaniasis. It is also recommended that further studies be done regarding the importance of drug resistance in the leishmania affected patients.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 153 ◽  
Author(s):  
Júlia S. Vianna ◽  
Diana Machado ◽  
Ivy B. Ramis ◽  
Fábia P. Silva ◽  
Dienefer V. Bierhals ◽  
...  

The basis of drug resistance in Mycobacterium abscessus is still poorly understood. Nevertheless, as seen in other microorganisms, the efflux of antimicrobials may also play a role in M. abscessus drug resistance. Here, we investigated the role of efflux pumps in clarithromycin resistance using nine clinical isolates of M. abscessus complex belonging to the T28 erm(41) sequevar responsible for the inducible resistance to clarithromycin. The strains were characterized by drug susceptibility testing in the presence/absence of the efflux inhibitor verapamil and by genetic analysis of drug-resistance-associated genes. Efflux activity was quantified by real-time fluorometry. Efflux pump gene expression was studied by RT-qPCR upon exposure to clarithromycin. Verapamil increased the susceptibility to clarithromycin from 4- to ≥64-fold. The efflux pump genes MAB_3142 and MAB_1409 were found consistently overexpressed. The results obtained demonstrate that the T28 erm(41) polymorphism is not the sole cause of the inducible clarithromycin resistance in M. abscessus subsp. abscessus or bolletii with efflux activity providing a strong contribution to clarithromycin resistance. These data highlight the need for further studies on M. abscessus efflux response to antimicrobial stress in order to implement more effective therapeutic regimens and guidance in the development of new drugs against these bacteria.


2018 ◽  
Author(s):  
Xiaoran Ge ◽  
Yuying Cai ◽  
Zhenghong Chen ◽  
Sizhe Gao ◽  
Xiwen Geng ◽  
...  

ABSTRACTThe drug resistance of Helicobacter pylori (H. pylori) is gradually becoming a serious problem. Biofilm formation is an important factor that leads to multidrug resistance in bacteria. The ability of H. pylori to form biofilms on the gastric mucosa has been known. However, there are few studies on the regulation mechanisms of H. pylori biofilm formation and multidrug resistance. Guanosine 3’-diphosphate 5’-triphosphate and guanosine 3’,5’-bispyrophosphate [(p)ppGpp] are global regulatory factors and are synthesized in H. pylori by the bifunctional enzyme SpoT. It has been reported that (p)ppGpp is involved in the biofilm formation and multidrug resistance of various bacteria. In this study, we found that SpoT also plays an important role in H. pylori biofilm formation and multidrug resistance. Therefore, it is necessary to carry out some further studies regarding its regulatory mechanism. Considering that efflux pumps are of great importance in the biofilm formation and multidrug resistance of bacteria, we tried to find if efflux pumps controlled by SpoT participate in these activities. Then, we found that Hp1174 (glucose/galactose transporter, gluP), an efflux pump of the MFS family, is highly expressed in biofilm-forming and multi-drug resistance (MDR) H. pylori and is upregulated by SpoT. Through further research, we determined that gluP involved in H. pylori biofilm formation and multidrug resistance. Furthermore, the average expression level of gluP in clinical MDR strains was considerably higher than that in clinical drug-sensitive strains. Taken together, our results revealed a novel molecular mechanism of H. pylori tolerance to multidrug.


Author(s):  
Bahare Salehi ◽  
Zohreh Ghalavand ◽  
Abbas Yadegar ◽  
Gita Eslami

Abstract Background This study was aimed to characterize the genetic diversity and expression of three putative resistance-nodulation-cell division (RND)-type efflux systems and their contribution to multidrug efflux in clinical isolates of Acinetobacter baumannii. Methods Antimicrobial susceptibility testing of 95 A. baumannii isolates was determined by Kirby-Bauer disk diffusion for 18 antibiotics and minimum inhibitory concentration (MIC) of colistin was determined by the broth microdilution method. Moreover, the MIC of five classes of antibiotics was assessed using E-test strips in the presence and absence of phenylalanine-arginine beta-naphthylamide (PAβN). Regulatory genes of the RND efflux pumps (adeRS, adeL, adeN and baeSR) were subjected to sequencing. The relative expression of adeB, adeG and adeJ genes was determined by quantitative real-time PCR (qRT-PCR). Results Overall, the majority of isolates (94%) were extensively drug-resistant (XDR). In the phenotypic assay, efflux pump activity was observed in 40% of the isolates against multiple antibiotics mainly tigecycline. However, we found no efflux activity against imipenem. Several amino acid substitutions were detected in the products of regulatory genes; except in AdeN. Of note, G186V mutation in AdeS was found to be associated with overexpression of its efflux pump. No insertion sequences were detected. Conclusions Our findings outlined the role of RND efflux pumps in resistance of A. baumannii to multiple antibiotics particularly tigecycline, and pointed out the importance of a variety of single mutations in the corresponding regulatory systems. Further studies are required to decipher the precise role of RND efflux pumps in multidrug-resistant clinical isolates of A. baumannii.


2021 ◽  
Author(s):  
Bahare Salehi ◽  
Zohreh Ghalavand ◽  
Abbas Yadegar ◽  
Gita Eslami

Abstract Background: This study was aimed to characterize the genetic diversity and expression of three putative resistance-nodulation-cell division (RND)-type efflux systems and their contribution to multidrug efflux in clinical isolates of Acinetobacter baumannii.Methods: Antimicrobial susceptibility testing of 95 A. baumannii isolates was determined by Kirby-Bauer disk diffusion for 18 antibiotics and minimum inhibitory concentration (MIC) of colistin was determined by the broth microdilution method. Moreover, the MIC of five classes of antibiotics was assessed using E-test strips in the presence and absence of phenylalanine-arginine beta-naphthylamide (PAβN). Regulatory genes of the RND efflux pumps (adeRS, adeL, adeN and baeSR) were subjected to sequencing. The relative expression of adeB, adeG and adeJ genes was determined by quantitative real-time PCR (RT-PCR).Results: Overall, the majority of isolates (93%) were extensively drug-resistant (XDR). In the phenotypic assay, efflux pump activity was observed in 40% of the isolates against multiple antibiotics mainly tigecycline. However, we found no efflux activity against imipenem. Several amino acid substitutions were detected in the products of regulatory genes; except in AdeN. Of note, G186V mutation in AdeS was found to be associated with overexpression of its efflux pump. No insertion sequences were detected. Conclusions: Our findings outlined the role of RND efflux pumps in resistance of A. baumannii to multiple antibiotics particularly tigecycline, and pointed out the importance of a variety of single mutations in the corresponding regulatory systems. Further studies are required to decipher the precise role of RND efflux pumps in multidrug-resistant clinical isolates of A. baumannii.


2009 ◽  
Vol 53 (9) ◽  
pp. 3675-3682 ◽  
Author(s):  
Santiago Ramón-García ◽  
Carlos Martín ◽  
Charles J. Thompson ◽  
José A. Aínsa

ABSTRACT Bacterial efflux pumps have traditionally been studied as low-level drug resistance determinants. Recent insights have suggested that efflux systems are often involved with fundamental cellular physiological processes, suggesting that drug extrusion may be a secondary function. In Mycobacterium tuberculosis, little is known about the physiological or drug resistance roles of efflux pumps. Using Mycobacterium bovis BCG as a model system, we showed that deletion of the Rv1410c gene encoding the P55 efflux pump made the strain more susceptible to a range of toxic compounds, including rifampin (rifampicin) and clofazimine, which are first- and second-line antituberculosis drugs. The efflux pump inhibitors carbonyl cyanide m-chlorophenylhydrazone (CCCP) and valinomycin inhibited the P55-determined drug resistance, suggesting the active export of the compounds by use of the transmembrane proton and electrochemical gradients as sources of energy. In addition, the P55 efflux pump mutant was more susceptible to redox compounds and displayed increased intracellular redox potential, suggesting an essential role of the efflux pump in detoxification processes coupled to oxidative balance within the cell. Finally, cells that lacked the p55 gene displayed smaller colony sizes and had a growth defect in liquid culture. This, together with an increased susceptibility to the cell wall-targeting compounds bacitracin and vancomycin, suggested that P55 is needed for proper cell wall assembly and normal growth in vitro. Thus, P55 plays a fundamental role in oxidative stress responses and in vitro cell growth, in addition to contributing to intrinsic antibiotic resistance. Inhibitors of the P55 efflux pump could help to improve current treatments for tuberculosis.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Lakshana Sreenivasan ◽  
Hui Wang ◽  
Shyong Quin Yap ◽  
Pascal Leclair ◽  
Anthony Tam ◽  
...  

AbstractMedulloblastoma (MB) is a high-grade pediatric brain malignancy that originates from neuronal precursors located in the posterior cranial fossa. In this study, we evaluated the role of STAT3 and IL-6 in a tumor microenvironment mediated drug resistance in human MBs. We established that the Group 3 MB cell line, Med8A, is chemosensitive (hence Med8A-S), and this is correlated with a basal low phosphorylated state of STAT3, while treatment with IL-6 induced robust increases in pY705-STAT3. Via incremental selection with vincristine, we derived the stably chemoresistant variant, Med8A-R, that exhibited multi-drug resistance, enhanced IL-6 induced pY705-STAT3 levels, and increased IL6R expression. Consequently, abrogation of STAT3 or IL6R expression in Med8A-R led to restored chemosensitivity to vincristine, highlighting a prominent role for canonical IL-6/STAT3 signaling in acquired drug resistance. Furthermore, Med8A-S subjected to conditioning exposure with IL-6, termed Med8A-IL6+ cells, exhibited enhanced vincristine resistance, increased expression of pY705-STAT3 and IL6R, and increased secretion of IL-6. When cocultured with Med8A-IL6+ cells, Med8A-S cells exhibited increased pY705-STAT3 and increased IL-6 secretion, suggesting a cytokine feedback loop responsible for amplifying STAT3 activity. Similar IL-6 induced phenomena were also observed in the Group 3 MB cell lines, D283 and D341, including increased pY705-STAT3, drug resistance, IL-6 secretion and IL6R expression. Our study unveiled autocrine IL-6 as a promoter of STAT3 signaling in development of drug resistance, and suggests therapeutic benefits for targeting the IL-6/STAT3 signaling axis in Group 3 MBs.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Raees A. Paul ◽  
Shivaprakash M. Rudramurthy ◽  
Manpreet Dhaliwal ◽  
Pankaj Singh ◽  
Anup K. Ghosh ◽  
...  

ABSTRACT The magnitude of azole resistance in Aspergillus flavus and its underlying mechanism is obscure. We evaluated the frequency of azole resistance in a collection of clinical (n = 121) and environmental isolates (n = 68) of A. flavus by the broth microdilution method. Six (5%) clinical isolates displayed voriconazole MIC greater than the epidemiological cutoff value. Two of these isolates with non-wild-type MIC were isolated from same patient and were genetically distinct, which was confirmed by amplified fragment length polymorphism analysis. Mutations associated with azole resistance were not present in the lanosterol 14-α demethylase coding genes (cyp51A, cyp51B, and cyp51C). Basal and voriconazole-induced expression of cyp51A homologs and various efflux pump genes was analyzed in three each of non-wild-type and wild-type isolates. All of the efflux pump genes screened showed low basal expression irrespective of the azole susceptibility of the isolate. However, the non-wild-type isolates demonstrated heterogeneous overexpression of many efflux pumps and the target enzyme coding genes in response to induction with voriconazole (1 μg/ml). The most distinctive observation was approximately 8- to 9-fold voriconazole-induced overexpression of an ortholog of the Candida albicans ATP binding cassette (ABC) multidrug efflux transporter, Cdr1, in two non-wild-type isolates compared to those in the reference strain A. flavus ATCC 204304 and other wild-type strains. Although the dominant marker of azole resistance in A. flavus is still elusive, the current study proposes the possible role of multidrug efflux pumps, especially that of Cdr1B overexpression, in contributing azole resistance in A. flavus.


Sign in / Sign up

Export Citation Format

Share Document