scholarly journals Susceptibility to Nisin, Bactofencin, Pediocin and Reuterin of Multidrug Resistant Staphylococcus aureus, Streptococcus dysgalactiae and Streptococcus uberis Causing Bovine Mastitis

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1418
Author(s):  
Samantha Bennett ◽  
Laila Ben Said ◽  
Pierre Lacasse ◽  
François Malouin ◽  
Ismail Fliss

Antibiotics are the most effective strategy to prevent and treat intramammary infections. However, their misuse has led to the dissemination of multidrug resistant bacteria (MDR) for both animals and humans. Efforts to develop new alternative strategies to control bacterial infections related to MDR are continuously on the rise. The objective of this study was to evaluate the antimicrobial activity of different bacteriocins and reuterin against MDR Staphylococcus and Streptococcus clinical isolates involved in bovine mastitis. A bacterial collection including S. aureus (n = 19), S. dysgalactiae (n = 17) and S. uberis (n = 19) was assembled for this study. Antibiotic resistance profiles were determined by the disk diffusion method. In addition, sensitivity to bacteriocins and reuterin was evaluated by determining minimum inhibitory concentrations (MIC). A total of 21 strains (37.5%) were MDR. MICs ranged from ≤1.0 μg/mL to ≥100 μg/mL for nisin and 2.0 to ≥250 μg/mL for bactofencin. Reuterin was active against all tested bacteria, and MICs vary between 70 and 560 μg/mL. Interestingly, 20 MDR strains were inhibited by bactofencin at a concentration of ≤250 μg/mL, while 14 were inhibited by nisin at an MIC of ≤100 μg/mL. Pediocin did not show an inhibitory effect.

Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 191 ◽  
Author(s):  
Sobur ◽  
Hasan ◽  
Haque ◽  
Mridul ◽  
Noreddin ◽  
...  

Houseflies (Musca domestica) are well-known mechanical vectors for spreading multidrug-resistant bacteria. Fish sold in open markets are exposed to houseflies. The present study investigated the prevalence and antibiotypes of multidrug-resistant (MDR) Salmonella spp. in houseflies captured from a fish market. Direct interviews with fish vendors and consumers were also performed to draw their perceptions about the role of flies in spreading antibiotic-resistant bacteria. A total of 60 houseflies were captured from a local fish market in Bangladesh. The presence of Salmonella spp. was confirmed using PCR method. Antibiogram was determined by the disk diffusion method, followed by the detection of tetA, tetB, and qnrA resistance genes by PCR. From the interview, it was found that most of the consumers and vendors were not aware of antibiotic resistance, but reported that flies can carry pathogens. Salmonella spp. were identified from the surface of 34 (56.7%) houseflies, of which 31 (91.2%) were found to be MDR. This study revealed 25 antibiotypes among the isolated Salmonella spp. All tested isolates were found to be resistant to tetracycline. tetA and tetB were detected in 100% and 47.1% of the isolates, respectively. Among the 10 isolates phenotypically found resistant to ciprofloxacin, six (60%) were found to be positive for qnrA gene. As far as we know, this is the first study from Bangladesh to report and describe the molecular detection of multidrug-resistant Salmonella spp. in houseflies in a fish market facility. The occurrence of a high level of MDR Salmonella in houseflies in the fish market is of great public health concerns.


2019 ◽  
Vol 82 (11) ◽  
pp. 1857-1863 ◽  
Author(s):  
ZAHRA S. AL-KHAROUSI ◽  
NEJIB GUIZANI ◽  
ABDULLAH M. AL-SADI ◽  
ISMAIL M. AL-BULUSHI

ABSTRACT Enterobacteria may gain antibiotic resistance and be potent pathogens wherever they are present, including in fresh fruits and vegetables. This study tested the antibiotic resistance of enterobacteria isolated from 13 types of local and imported fresh fruits and vegetables (n = 105), using the standard Kirby-Bauer disk diffusion method. Phenotypic and genotypic characterizations of AmpC β-lactamases were determined in cefoxitin-resistant isolates. Ten percent of the enterobacteria tested (n = 88) were pansusceptible, 74% were resistant to at least one antibiotic, and 16% were multidrug resistant. Enterobacteria isolates showed the highest antibiotic resistance against ampicillin (66%), cephalothin (57%), amoxicillin–clavulanic acid (33%), cefoxitin (31%), tetracycline (9%), nalidixic acid (7%), trimethoprim (6%), and kanamycin (5%). Three isolates showed intermediate resistance to the clinically important antibiotic imipenem. Escherichia coli isolated from lettuce exhibited multidrug resistance against five antibiotics. Fifteen isolates were confirmed to have AmpC β-lactamase, using the inhibitor-based test and the antagonism test; the latter test confirmed that the enzyme was an inducible type. Four types of ampC β-lactamase genes (CIT, EBC, FOX, and MOX) were detected in eight isolates: four Enterobacter cloacae isolates and one isolate each of Citrobacter freundii, Enterobacter asburiae, Enterobacter hormaechei, and Enterobacter ludwigii. It was concluded that fresh fruits and vegetables might play a role as a source or vehicle for transferring antibiotic-resistant bacteria that might spread to other countries through exportation. The clinically significant AmpC β-lactamase was rarely documented in the literature on bacteria isolated from fruits and vegetables, and to our knowledge, this is the first report on the detection of an inducible type in such commodities.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Feleke Moges ◽  
Setegn Eshetie ◽  
Mengistu Endris ◽  
Kahsay Huruy ◽  
Dagnachew Muluye ◽  
...  

Background. Cockroaches are source of bacterial infections and this study was aimed to assess bacterial isolates and their antimicrobial profiles from cockroaches in Gondar town, Ethiopia.Methods. A total of 60 cockroaches were collected from March 1 to May 30, 2014, in Gondar town. Bacterial species were isolated from external and internal parts of cockroaches. Disk diffusion method was used to determine antibiotic susceptibility patterns. Data were entered and analyzed by using SPSS version 20;Pvalues <0.005 were considered as statistically significant.Results. Of 181 identified bacteria species, 110 (60.8%) and 71 (39.2%) were identified from external and internal parts of cockroaches, respectively.Klebsiella pneumoniae32 (17.7%),Escherichia coli29 (16%), andCitrobacterspp. 27 (15%) were the predominant isolates. High resistance rate was observed to cotrimoxazole, 60 (33.1%), and least resistance rate was noted to ciprofloxacin, 2 (1.1%). Additionally, 116 (64.1%) of the isolates were MDR strains;Salmonellaspp. were the leading MDR isolates (100%) followed byEnterobacter(90.5%) andShigellaspp. (76.9%).Conclusion. Cockroaches are the potential source of bacteria pathogens with multidrug resistant strains and hence effective preventive and control measures are required to minimize cockroach related infections.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1617
Author(s):  
Raouaa Maaroufi ◽  
Olfa Dziri ◽  
Linda Hadjadj ◽  
Seydina M. Diene ◽  
Jean-Marc Rolain ◽  
...  

Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (blaNDM-1 (n = 8); blaNDM-1 + blaVIM-2 (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored blaOXA-494. Other genes were also detected, notably blaTEM (n = 23), blaCTX-M-1 (n = 10) and blaCTX-M-9 (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.


2019 ◽  
Vol 13 (2) ◽  
pp. 7-10
Author(s):  
Fatima Afroz ◽  
Shaheda Anwar ◽  
Mashrura Quraishi ◽  
GM Mohiuddin ◽  
SM Ali Ahmed ◽  
...  

Carbapenems, often agents of last resort for multidrug resistant bacterial infections are now threatened by widespread dissemination of carbapenem-resistant Enterobacteriaceae (CRE). Production of carbapenemases remain the most clinically important mechanism of carbapenem resistance in Enterobacteriaceae. The objective of this study was to determine the antibiogram pattern of carbapenemase producing Enterobacteriaceae. A cross sectional study was conducted at department of Microbiology and Immunology, BSMMU from September 2018 to August 2019. A total of 145 CRE isolates from different clinical samples were studied.Antimicrobial susceptibility was examinedby disk diffusion method and MIC of colistin by broth microdilution method. Resistant carbapenemase genes NDM and OXA-48 were identified by polymerase chain reaction. Out of 145 CRE isolates, 104 were NDM, 73 were OXA-48and 34 isolates were both NDM and OXA-48 co-producers. All the NDM and OXA-48 carbapenemase producing isolates were 100% resistant to meropenem, imipenem, ertapenem, ceftriaxone, ceftazidime, cefotaxime, cefuroxime, amoxicillin + clavulanic acid and piperacillin + tazobactam. Resistance rates of reserved antimicrobials to treat CRE isolates were also alarming. Thirty seven percent, 9.6% and 5.5 % of OXA-48 carbapenemase producers and 26.0%, 10.6% and 2.9% of NDM carbapenemase producers were resistant to colistin, polymyxin B and tigecycline respectively.Among the carbapenemase producing isolates, 16.6% (24) were multidrug resistant (MDR), 82.1% (119) were extensively drug resistant (XDR) and 1.3% (2) isolates were pan drug resistantwhich highlights the emerging therapeutic challenge for these superbugs. Bangladesh J Med Microbiol 2019; 13 (2): 7-10


2014 ◽  
Vol 20 ◽  
pp. 41-48
Author(s):  
MM Akhtar ◽  
MS Islam ◽  
MF Begum ◽  
M Anisuzzaman ◽  
MF Alam

Context: Emergence of multi drug resistance bacteria (MDRB) to human pathogenic infection is increasing day by day but the number of new drugs to overwhelm the problem is not sufficient. Evidences revealed that Moringa oleifera Lamk. has various pharmaceutical activities like antibacterial, antifungal, antispasmodic, anti-inflammatory, anticancer and diuretic. Herbal treatment may be one of the possible ways to treat diseases caused by multidrug-resistant bacteria. Objectives: The present research was undertaken to screen of multidrug resistant bacteria (MDRB) from antibiotic-associated diarrheal samples and to evaluate the potentiality of M. oleifera leaf extracts on these bacteria with the view to provide scientific evidence for its application in health remedy. Materials & Methods: Antibiotic-associated diarrheal fecal specimens were collected from pediatric ward of Rajshahi Medical College and cultured onto MacConkey agar. MDRB were determined by antibiotic susceptibility test, using disc-agar diffusion method. Biochemical tests of the MDRB were done according to Bergey’s Manual of Determinative Bacteriology for identification of the species. Dried and fresh leaf of M. oleifera was used to prepare exaction with or without solvents such as hot water, cold water, chloroform, petroleum ether, acetone and ethanol, separately. Antibacterial assay was done by disc diffusion method and minimum inhibitory concentration of the extracts was also measured. Results: In the present study seven isolates were screened as MDRB and the highest prevalence (42.86%) was occurred in the age group of 25-36 months and the lowest (14.28) was in the group of <1 and 1-6 months. Ethanol extract of dried leaf of M. oleifera Lamk. showed moderate inhibitory activity against all of the isolates while petroleum ether, chloroform and acetone extracts of dried leaf have no inhibitory effect. Fresh leaf sap powder in DMSO exhibited strong inhibitory effect against all of the test bacteria where as hot aqueous extract could not show any inhibition. The minimum inhibitory concentrations (MIC) of the potent extracts ranged 937.5 to 3750 ?g/ml and 7.9 to 234.4 ?g/ml in dried and fresh leaf extracts, respectively. Conclusion: The present data indicates that M. oleifera leaf extract possess antimicrobial potential to control of MDRB causes infection thus it can be used as a novel drugs in future. DOI: http://dx.doi.org/10.3329/jbs.v20i0.17652 J. bio-sci. 20: 41-48, 2012


2015 ◽  
Vol 60 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Daniela Minerdi ◽  
Ivan Zgrablic ◽  
Silvia Castrignanò ◽  
Gianluca Catucci ◽  
Claudio Medana ◽  
...  

ABSTRACTAntimicrobial resistance is a global issue currently resulting in the deaths of hundreds of thousands of people a year worldwide. Data present in the literature illustrate the emergence of many bacterial species that display resistance to known antibiotics;Acinetobacterspp. are a good example of this. We report here thatAcinetobacter radioresistenshas a Baeyer-Villiger monooxygenase (Ar-BVMO) with 100% amino acid sequence identity to the ethionamide monooxygenase of multidrug-resistant (MDR)Acinetobacter baumannii. Both enzymes are only distantly phylogenetically related to other canonical bacterial BVMO proteins. Ar-BVMO not only is capable of oxidizing two anticancer drugs metabolized by human FMO3, danusertib and tozasertib, but also can oxidize other synthetic drugs, such as imipenem. The latter is a member of the carbapenems, a clinically important antibiotic family used in the treatment of MDR bacterial infections. Susceptibility tests performed by the Kirby-Bauer disk diffusion method demonstrate that imipenem-sensitiveEscherichia coliBL21 cells overexpressing Ar-BVMO become resistant to this antibiotic. An agar disk diffusion assay proved that when imipenem reacts with Ar-BVMO, it loses its antibiotic property. Moreover, an NADPH consumption assay with the purified Ar-BVMO demonstrates that this antibiotic is indeed a substrate, and its product is identified by liquid chromatography-mass spectrometry to be a Baeyer-Villiger (BV) oxidation product of the carbonyl moiety of the β-lactam ring. This is the first report of an antibiotic-inactivating BVMO enzyme that, while mediating its usual BV oxidation, also operates by an unprecedented mechanism of carbapenem resistance.


Author(s):  
Saeed Khoshnood ◽  
Mohsen Heidary ◽  
Ali Hashemi ◽  
Fatemeh Shahi ◽  
Morteza Saki ◽  
...  

Background: Increasing prevalence of multiple antibiotic resistance in Klebsiella pneumoniae strains confines the therapeutic options used to treat bacterial infections. Objective: We aimed in this study to investigate the role of AcrAB, qepA efflux pump, and AAC(6′)-Ib-cr enzyme in ciprofloxacin resistance and to detect the RAPD-PCR fingerprint of K. pneumoniae isolates. Methods: In total, 117 K. pneumoniae isolates were collected from hospitalized patients in three hospitals in Tehran, Iran from August 2013 to March 2014. Antimicrobial susceptibility tests were performed by the disk diffusion method. Molecular identification and expression level of encoding quinolone resistance genes, acrA, acrB, qepA, and aac(6')-Ib-cr, was per-formed by PCR and real-time PCR assays, respectively. All the K. pneumoniae isolates containing these genes was used simultaneously for RAPD-PCR typing. Results: Colistin and carbapenems were the most efficient antibiotics against the clinical isolates of K. pneumoniae. PCR assay demonstrated that among the 117 isolates, 110 (94%) and 102 (87%) were positive for acrA and acrB gene, and for qepA and aac(6′)-Ib-cr genes, 5 (4%) and 100 (85%) isolates were detected, respectively. Determination of AcrAB pump expression in 21% of strains demonstrated an increased expression, and the mean increase expression for acrB genes was 0.5-81. The results of RAPD-PCR reflected that in 95% CI, all isolates belong to a clone. Conclusion: A high prevalence of genes encoding quinolone resistance in K. pneumoniae was detected in clinical samples. Therefore, control of infection and prevention of drug-resistant bacteria spread need careful management of medication and identification of resistant isolates.


2021 ◽  
Vol 23 (4) ◽  
pp. 290-296
Author(s):  
Rojina Darnal ◽  
Mehraj Ansari ◽  
Ganesh Rai ◽  
Kul Raj Rai ◽  
Shiba Kumar Rai

Carbapenemases are the enzymes that catalyze β–lactam groups of antibiotics. The carbapenemase producers are resistant to β–lactam antibiotics and are usually multidrug-resistant bacteria challenging widely used therapeutics and treatment options. Therefore, the detection of carbapenemase activity among clinical isolates is of great therapeutic importance. We aimed to study the MDR and carbapenemase-producing Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from various clinical samples at a tertiary care hospital in Nepal. A total of 3,579 clinical samples were collected from the patients visiting the Department of Microbiology, B&B Hospital, Gwarko, Lalitpur. The samples were processed to isolate K. pneumoniae and P. aeruginosa and then subjected to antibiotic susceptibility testing (AST) by the Kirby-Bauer disk diffusion method. Phenotypic detection of carbapenemase activity was performed in the imipenem-resistant isolates by the modified Hodge test (MHT). Of the total samples, 1,067 (29.8%) samples showed significant growth positivity, out of which 190 (17.3%) isolates were K. pneumoniae and 121 (11.3%) were P. aeruginosa. Multidrug resistance was seen in 70.5% of the K. pneumoniae isolates and 65.3% of the P. aeruginosa isolates. Carbapenemase production was confirmed in 11.9%, and 12.2% of the imipenem-resistant K. pneumoniae and P. aeruginosa isolates, respectively, by the MHT. This study determined the higher prevalence of MDR among K. pneumoniae and P. aeruginosa; however, carbapenemase production was relatively low.


2016 ◽  
Vol 79 (7) ◽  
pp. 1234-1239 ◽  
Author(s):  
CHINWE JULIANA IWU ◽  
BENSON CHUKS IWERIEBOR ◽  
LARRY CHIKWELU OBI ◽  
ALBERTUS KOTZE BASSON ◽  
ANTHONY IFEANYI OKOH

ABSTRACT The exposure of farm animals to antimicrobials for treatment, prophylaxis, or growth promotion can select for resistant bacteria that can be transmitted to humans, and Salmonella as an important zoonotic pathogen can act as a potential reservoir of antimicrobial resistance determinants. We assessed the antibiogram profiles of Salmonella species isolated from pig herds in two commercial farms in South Africa. Two hundred fifty-eight presumptive Salmonella isolates were recovered from the fecal samples of 500 adult pigs. Specific primers targeting Salmonella serogroups A, B, C1, C2, and D were used to determine the prevalence of different serogroups. Only serogroup A (n =48) was detected, while others were not. Antimicrobial susceptibility of the confirmed Salmonella serogroup A isolates was performed by using the disk diffusion method against a panel of 18 antibiotics. All the 48 isolates were resistant to tetracycline and oxytetracycline, while 75% were resistant to ampicillin, sulphamethoxazole-trimethoprim, nalidixic acid, and streptomycin. All the isolates exhibited multidrug resistance, with the predominant phenotype being against 11 antibiotics, and multiple antibiotic resistance index ranged between 0.3 and 0.6. The incidence of genes encoding resistance against ampicillin (ampC), tetracycline (tetA), and streptomycin (strA) were 54, 61, and 44%, respectively. We conclude that healthy pigs are potential reservoirs of multidrug-resistant Salmonella that could be transmitted to humans through the food chain and, hence, a significant public health threat.


Sign in / Sign up

Export Citation Format

Share Document