scholarly journals The pathogen Mycoplasma dispar Shows High Minimum Inhibitory Concentrations for Antimicrobials Commonly Used for Bovine Respiratory Disease

Antibiotics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 460
Author(s):  
Marco Bottinelli ◽  
Marianna Merenda ◽  
Michele Gastaldelli ◽  
Micaela Picchi ◽  
Elisabetta Stefani ◽  
...  

Mycoplasma dispar is an overlooked pathogen often involved in bovine respiratory disease (BRD), which affects cattle around the world. BRD results in lost production and high treatment and prevention costs. Additionally, chronic therapies with multiple antimicrobials may lead to antimicrobial resistance. Data on antimicrobial susceptibility to M. dispar is limited so minimum inhibitory concentrations (MIC) of a range of antimicrobials routinely used in BRD were evaluated using a broth microdilution technique for 41 M. dispar isolates collected in Italy between 2011–2019. While all isolates had low MIC values for florfenicol (<1 μg/mL), many showed high MIC values for erythromycin (MIC90 ≥8 μg/mL). Tilmicosin MIC values were higher (MIC50 = 32 μg/mL) than those for tylosin (MIC50 = 0.25 μg/mL). Seven isolates had high MIC values for lincomycin, tilmicosin and tylosin (≥32 μg/mL). More, alarmingly, results showed more than half the strains had high MICs for enrofloxacin, a member of the fluoroquinolone class considered critically important in human health. A time-dependent progressive drift of enrofloxacin MICs towards high-concentration values was observed, indicative of an on-going selection process among the isolates.

Livestock ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 58-64
Author(s):  
Tim Potter

Bovine respiratory disease (BRD) remains a significant issue to farming around the world. Technology is now available that can be used to improve the speed and accuracy of detection, and it is important that we consider how this technology can best be implemented to maximise its returns. The use of antimicrobials in farming remains high on the agenda and this article discusses some of the key things to consider when prescribing for BRD to maximise effect and reduce the potential for the emergence of resistance. To truly control BRD it is essential that we consider the farm and potentially the industry holistically. At a farm level it is essential that all potential risk factors are managed to reduce disease. Further opportunities for reducing the risk of disease are offered by closer working relationships between farms and integrated supply chains as these can reduce the stress around periods of transition and also enable better control of endemic diseases


2020 ◽  
pp. 1-7
Author(s):  
Sharif S. Aly ◽  
Betsy M. Karle ◽  
Deniece R. Williams ◽  
Gabriele U. Maier ◽  
Sasha Dubrovsky

Abstract Bovine respiratory disease (BRD) is the leading natural cause of death in US beef and dairy cattle, causing the annual loss of more than 1 million animals and financial losses in excess of $700 million. The multiple etiologies of BRD and its complex web of risk factors necessitate a herd-specific intervention plan for its prevention and control on dairies. Hence, a risk assessment is an important tool that producers and veterinarians can utilize for a comprehensive assessment of the management and host factors that predispose calves to BRD. The current study identifies the steps taken to develop the first BRD risk assessment tool and its components, namely the BRD risk factor questionnaire, the BRD scoring system, and a herd-specific BRD control and prevention plan. The risk factor questionnaire was designed to inquire on aspects of calf-rearing including management practices that affect calf health generally, and BRD specifically. The risk scores associated with each risk factor investigated in the questionnaire were estimated based on data from two observational studies. Producers can also estimate the prevalence of BRD in their calf herds using a smart phone or tablet application that facilitates selection of a true random sample of calves for scoring using the California BRD scoring system. Based on the risk factors identified, producers and herd veterinarians can then decide the management changes needed to mitigate the calf herd's risk for BRD. A follow-up risk assessment after a duration of time sufficient for exposure of a new cohort of calves to the management changes introduced in response to the risk assessment is recommended to monitor the prevalence of BRD.


2020 ◽  
pp. 1-4
Author(s):  
John Dustin Loy

Abstract Advances in molecular and proteomic technologies and methods have enabled new diagnostic tools for bovine respiratory pathogens that are high-throughput, rapid, and extremely sensitive. Classically, diagnostic testing for these pathogens required culture-based approaches that required days to weeks and highly trained technical staff to conduct. However, new advances such as multiplex hydrolysis probe-based real-time PCR technology have enabled enhanced and rapid detection of bovine respiratory disease (BRD) pathogens in a variety of clinical specimens. These tools provide many advantages and have shown superiority over culture for co-infections/co-detections where multiple pathogens are present. Additionally, the integration of matrix-assisted laser desorption ionization time of flight mass spectrometry (MS) into veterinary diagnostic labs has revolutionized the ability to rapidly identify bacterial pathogens associated with BRD. Recent applications of this technology include the ability to type these opportunistic pathogens to the sub-species level (specifically Mannheimia haemolytica) using MS-based biomarkers, to allow for the identification of bacterial genotypes associated with BRD versus genotypes that are more likely to be commensal in nature.


2021 ◽  
Author(s):  
Shadpour Mallakpour ◽  
Elham Azadi ◽  
Chaudhery Mustansar Hussain

COVID-19, this viral respiratory disease, which was first reported in Wuhan, China, in 2019 and subsequently, spread around the world, is caused via the coronavirus SARS-CoV-2. These days, all countries...


2019 ◽  
Vol 66 (3) ◽  
pp. 1379-1386 ◽  
Author(s):  
Maodong Zhang ◽  
Janet E. Hill ◽  
Champika Fernando ◽  
Trevor W. Alexander ◽  
Edouard Timsit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document