scholarly journals Oxidative Stress and Antioxidant Pathway in Allergic Rhinitis

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1266
Author(s):  
Munsoo Han ◽  
Dabin Lee ◽  
Sang Hag Lee ◽  
Tae Hoon Kim

Oxidative stress is the cause and consequence of redox metabolism in various physiological and pathological conditions. Understanding the molecular pathways underlying oxidative stress and the role of antioxidants could serve as the key to helping treat associated diseases. Allergic rhinitis is a condition that deteriorates the daily function and quality of life of afflicted individuals and is associated with a high socioeconomic burden and prevalence. Recent studies have focused on the role of oxidative stress and antioxidants in allergic rhinitis. This review discusses animal and clinical studies on oxidative markers and the potential therapeutic dietary antioxidants for allergic rhinitis.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Marzia Perluigi ◽  
D. Allan Butterfield

Down syndrome (DS) is one of the most frequent genetic abnormalities characterized by multiple pathological phenotypes. Indeed, currently life expectancy and quality of life for DS patients have improved, although with increasing age pathological dysfunctions are exacerbated and intellectual disability may lead to the development of Alzheimer's type dementia (AD). The neuropathology of DS is complex and includes the development of AD by middle age, altered free radical metabolism, and impaired mitochondrial function, both of which contribute to neuronal degeneration. Understanding the molecular basis that drives the development of AD is an intense field of research. Our laboratories are interested in understanding the role of oxidative stress as link between DS and AD. This review examines the current literature that showed oxidative damage in DS by identifying putative molecular pathways that play a central role in the neurodegenerative processes. In addition, considering the role of mitochondrial dysfunction in neurodegenerative phenomena, results demonstrating the involvement of impaired mitochondria in DS pathology could contribute a direct link between normal aging and development of AD-like dementia in DS patients.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Toshiro Saito ◽  
Junichi Sadoshima

The mitochondrion is an essential organelle that supplies ATP in cardiomyocytes (CMs). However, damaged mitochondria are harmful via the production of reactive oxygen species and induction of apoptosis in pathological conditions. Therefore, quality of mitochondria should be controlled tightly through various mitochondrial quality control mechanisms. Mitochondrial autophagy (mitophagy) is considered an integral part of this mechanism, and recent investigations uncovered the role of PINK1 and Parkin in mitophagy. However, these observations were made under artificial conditions, such as over-expression of Parkin or treatment with CCCP, and thus the precise mechanism has not been fully elucidated in more pathophysiologically relevant conditions. Recent evidence suggests that mitophagy can take place independently of ATG7, a molecule essential for the conventional form of autophagy, and that this form of autophagy is ULK1-dependent. We investigated the role of ULK1 and ATG7 in mediating mitophagy using mitochondria-targeted Keima (Mito-Keima) in cultured rat neonatal CMs. Keima has a bimodal excitation spectrum peaking at 440 and 560 nm, corresponding to the neutral and acidic pH, respectively. In CMs transfected with Mito-Keima, the fluorescent dots with a high 560nm/440nm ratio represent the mitochondria incorporated into autolysosomes which indicate mitophagy. Here we report that ULK1 plays a more predominant role in glucose deprivation (GD) -induced mitophagy than ATG7. Control CMs exhibited 8.7±1.0 % of the area of high-ratio dots per cells after GD. Knockdown of ULK1 significantly reduced the area to 2.3±0.9 % in CMs after GD (p<0.01, vs sh-Control). The reduction was significantly greater in CMs with knockdown of ULK1 than that of ATG7 (7.0±1.6 %, p<0.05, sh-ULK1 vs sh-ATG7). In addition, knockdown of Beclin1 and Drp1 also significantly decreased the area of high-ratio dots (about 1.0 % and 0.5 %, respectively). Overexpression of ULK1 was sufficient to induce mitophagy without starvation, whereas that of ATG7 was not. These results suggest that ULK1, Beclin1 and Drp1 play an essential role in mediating GD-induced mitophagy in CMs.


2022 ◽  
pp. 212-229
Author(s):  
Ashfaq Ahmad Shah ◽  
Sumaira Qayoom ◽  
Amit Gupta ◽  
Aqueel Ur Rehman

Current research on phytochemicals is mainly focused on novel phenolic and polyphenolic compounds expressing their potential as therapeutic agents in various diseases like cancer, autoimmune diseases, cardiovascular disorders, diabetes, oxidative stress-related diseases, as well as their properties to inhibit the growth and proliferation of infectious agents. Among the human physiological disorders, one of the most severe endocrine metabolic diseases is Diabetes mellitus which is a clinical disease distinguished by a deficit in the production of insulin or resistance to the action of insulin. Globally, diabetes is an increasing health concern which is now emerging as an epidemic. About 700-800 plants are exhibiting anti-diabetic activity that has been studied. As far as nanotechnology in diabetes research is concerned, it has made possible the buildout of novel glucose measurement as well as insulin delivery modalities that possess the potential to excellently enhance the quality of life of the diabetic patient.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yonghui Jiang ◽  
Huangcong Shi ◽  
Yue Liu ◽  
Shigang Zhao ◽  
Han Zhao

Oxidative stress has been recognized as one of the causal mediators of female infertility by affecting the oocyte quality and early embryo development. Improving oxidative stress is essential for reproductive health. Melatonin, a self-secreted antioxidant, has a wide range of effects by improving mitochondrial function and reducing the damage of reactive oxygen species (ROS). This minireview illustrates the applications of melatonin in reproduction from four aspects: physiological ovarian aging, vitrification freezing, in vitro maturation (IVM), and oxidative stress homeostasis imbalance associated with polycystic ovary syndrome (PCOS), emphasising the role of melatonin in improving the quality of oocytes in assisted reproduction and other adverse conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fatemeh Baratzadeh ◽  
Sepideh Elyasi ◽  
Amir Hooshang Mohammadpour ◽  
Sofia Salari ◽  
Amirhossein Sahebkar

Obsessive-compulsive disorder (OCD) is a chronic neuropsychiatric disorder that has a significant effect on the quality of life. The most effective treatment for OCD is the combination of selective serotonin reuptake inhibitors (SSRI) with cognitive behavior therapy (CBT). However, several adverse effects have been linked with this usual pharmacotherapy, and it is unsuccessful in many patients. The exact pathophysiology of OCD is not completely known, though the role of oxidative stress in its pathogenesis has been proposed recently. This review presents an overview of animal and human studies of antioxidant treatment for OCD. The use of antioxidants against oxidative stress is a novel treatment for several neurodegenerative and neuropsychiatric disorders. Among antioxidants, NAC was one of the most studied drugs on OCD, and it showed a significant improvement in OCD symptoms. Thus, antioxidants could be promising as an adjuvant treatment for OCD. However, a limited number of human studies are conducted on these agents, and for better judgment, human studies with a large sample size are necessary.


2009 ◽  
Vol 11 (3) ◽  
pp. 281-295 ◽  

Astrocytes are the main neural cell type responsible for the maintenance of brain homeostasis. They form highly organized anatomical domains that are interconnected into extensive networks. These features, along with the expression of a wide array of receptors, transporters, and ion channels, ideally position them to sense and dynamically modulate neuronal activity. Astrocytes cooperate with neurons on several levels, including neurotransmitter trafficking and recycling, ion homeostasis, energy metabolism, and defense against oxidative stress. The critical dependence of neurons upon their constant support confers astrocytes with intrinsic neuroprotective properties which are discussed here. Conversely, pathogenic stimuli may disturb astrocytic function, thus compromising neuronal functionality and viability. Using neuroinflammation, Alzheimer's disease, and hepatic encephalopathy as examples, we discuss how astrocytic defense mechanisms may be overwhelmed in pathological conditions, contributing to disease progression.


2016 ◽  
Vol 157 (45) ◽  
pp. 1781-1785 ◽  
Author(s):  
Iván Péter ◽  
Anna Jagicza ◽  
Zénó Ajtay ◽  
István Kiss ◽  
Balázs Németh

Psoriasis is among the most common dermatological diseases worldwide. Its significance is emphasized by adverse effects on quality of life, caused by chronic pain, physical and psychical disability due to psoriatic plaques. Besides the development of psoriatic arthritis, which often causes permanent joint damage, former studies revealed an increased risk of inflammatory bowel disease, cardiovascular disease and certain types of cancer. Genetic predisposition and oxidative stress caused by exogenous and endogenous factors can contribute to abnormal differentiation and hyperproliferation of keratinocytes, accordingly the development and maintenance of psoriasis. Moreover, excessive oxidative stress can be responsible for the onset of psoriasis complications. After a brief pathophysiological summary the authors discuss the role of oxidative stress in the development of psoriasis and its complications through several well studied biomarkers (asymmetric dimethylarginine, malondialdehyde, superoxide dismutase, catalase). Orv. Hetil., 2016, 157(45), 1781–1785.


Children ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 24 ◽  
Author(s):  
Helen T. Wang ◽  
Sara Anvari ◽  
Katherine Anagnostou

The prevalence of allergic disorders has been increasing worldwide and significantly impacts the quality of life of the atopic individual. There has been an increased interest in the role of probiotics for the prevention and treatment of allergic disorders, given the recent evidence that atopy risk may be associated with a dysbiosis of the gut microbiome. Research in this area is ongoing with some studies showing possible benefits of probiotics, with seemingly little to no risk. While these studies suggest that there may be a promise in probiotic use for the prevention or treatment of allergy, further evidence is needed to determine its efficacy, optimal dosing, and strains needed for treatment. In this review, we discuss recently published studies examining the benefits, risks, and role of probiotics in preventing atopic dermatitis, asthma, allergic rhinitis, and food allergy.


Sign in / Sign up

Export Citation Format

Share Document