scholarly journals Zerumbone Exhibit Protective Effect against Zearalenone In-Duced Toxicity via Ameliorating Inflammation and Oxidative Stress Induced Apoptosis

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1593
Author(s):  
Hamad Mohammed AbuZahra ◽  
Peramaiyan Rajendran ◽  
Mohammad Bani Ismail

Zearalenone are widely occurring food contaminants that cause hepatotoxicity. This research work aimed to investigate how zerumbone, a plant-derived dietary compound, can fight ZEA-induced hepatotoxicity. ZER is found to increase the cells’ toxin resistance. This study was performed on mice challenged with ZEA. The administration of ZER decreased the level of alkaline phosphatase and alanine aminotransferase (ALT). Simultaneously, ZER attenuated the inflammatory response via significantly reducing the levels of pro-inflammatory factors, including interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in serum. Pretreatment with ZER reduced the hepatic malondialdehyde (MDA) concentration, as well as the depletion of hepatic superoxide dismutase (SOD), hepatic glutathione (GSH), and hepatic catalase (CAT). Moreover, it significantly ameliorated ZEA-induced liver damage and histological hepatocyte changes. ZER also relieved ZEA-induced apoptosis by regulating the PI3K/AKT pathway and Nrf2 and HO-1 expression. Furthermore, ZER increasingly activated Bcl2 and suppressed apoptosis marker proteins. Our findings suggest that ZER exhibits the ability to prevent ZEA-induced liver injury and present the underlying molecular basis for potential applications of ZER to cure liver injuries.

2019 ◽  
Vol 35 (1) ◽  
Author(s):  
Ju-Bin Kang ◽  
Dong-Ju Park ◽  
Murad-Ali Shah ◽  
Myeong-Ok Kim ◽  
Phil-Ok Koh

Abstract Lipopolysaccharide (LPS) acts as an endotoxin, releases inflammatory cytokines, and promotes an inflammatory response in various tissues. This study investigated whether LPS modulates neuroglia activation and nuclear factor kappa B (NF-κB)-mediated inflammatory factors in the cerebral cortex. Adult male mice were divided into control animals and LPS-treated animals. The mice received LPS (250 μg/kg) or vehicle via an intraperitoneal injection for 5 days. We confirmed a reduction of body weight in LPS-treated animals and observed severe histopathological changes in the cerebral cortex. Moreover, we elucidated increases of reactive oxygen species and oxidative stress levels in LPS-treated animals. LPS administration led to increases of ionized calcium-binding adaptor molecule-1 (Iba-1) and glial fibrillary acidic protein (GFAP) expression. Iba-1 and GFAP are well accepted as markers of activated microglia and astrocytes, respectively. Moreover, LPS exposure induced increases of NF-κB and pro-inflammatory factors, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Increases of these inflammatory mediators by LPS exposure indicate that LPS leads to inflammatory responses and tissue damage. These results demonstrated that LPS activates neuroglial cells and increases NF-κB-mediated inflammatory factors in the cerebral cortex. Thus, these findings suggest that LPS induces neurotoxicity by increasing oxidative stress and activating neuroglia and inflammatory factors in the cerebral cortex.


2006 ◽  
Vol 18 (2) ◽  
pp. 175
Author(s):  
B. Loureiro ◽  
A. M. Brad ◽  
P. J. Hansen

Heat shock and tumor necrosis factor-α (TNF-α) can increase apoptosis in bovine embryos in a developmental-dependent manner. It was hypothesized that addition of the caspase-9 inhibitor, z-LEHD-fmk, would block induction of apoptosis caused by heat shock of 41°C and TNF-α. Furthermore, it was hypothesized that the magnitude of induced apoptosis would increase with stage of development. Embryos were collected on day 4, 5, and 6 after in vitro insemination and were cultured for 24 h in the presence of either 100 μm z-LEHD-fmk reconstituted in 0.5% (v/v) dimethyl sulfoxide or vehicle dimethyl sulfoxide at either (1) 38.5°C for 24 h (control), (2) 41°C for 15 h followed by 38.5°C for 9 h, or (3) 38.5°C for 24 h with 10 ng/mL murine TNF-α. Embryos were then fixed, and the proportion of blastomeres undergoing apoptosis was determined using TUNEL labeling. Heat shock did not increase the percentage of blastomeres that were TUNEL-positive (% apoptosis) at day 4 (n = 100 embryos total). In contrast, heat shock increased % apoptosis at day 5 and day 6 (P < 0.04) and this effect was blocked by z-LEHD-fmk (temperature × inhibitor, P < 0.04). At day 5, % apoptosis in the absence and presence of z-LEHD-fmk was 3.8 ± 1.9% and 3.7 ± 1.7% at 38.5°C vs. 8.9 ± 1.5% and 4.1 ± 1.7% at 41°C (n = 75 embryos total). At day 6, % apoptosis in the absence and presence of z-LEHD-fmk was 3.6 ± 1.1% and 3.7 ± 1.2% at 38.5°C vs. 11.1 ± 1.1% and 6.1 ± 1.2% at 41°C (n = 168 embryos total). Mean cell number at the end of culture ranged from 21 to 26 cells at day 4, 43 to 73 cells at day 5, and 101 to 114 cells at day 6. Treatment with TNF-α also increased apoptosis at all days (P < 0.01), and z-LEHD-fmk blocked this effect (TNF × inhibitor, P = 0.05; n = 361 embryos total). Across days, % apoptosis was 3.6 ± 1.4% (control), 3.3 ± 1.3% (inhibitor), 11.1 ± 1.3% (TNF-α), and 6.0 ± 1.4% (TNF-α + inhibitor). Mean cell number at the end of culture ranged from 21 to 27 cells at day 4, 59 to 74 cells at day 5, and 105 to 115 cells at day 6. In conclusion, activation of caspase-9 dependent pathways is involved in the induction of apoptosis by heat shock and TNF-α. Moreover, the magnitude of induced apoptosis increases as embryos advance in development. This work was supported by USDA Grant No. 2004–34135–14715 and BARD Grant No. US–3551–04.


1999 ◽  
Vol 277 (3) ◽  
pp. G702-G708 ◽  
Author(s):  
Alix de la Coste ◽  
Monique Fabre ◽  
Nathalie McDonell ◽  
Arlette Porteu ◽  
Helène Gilgenkrantz ◽  
...  

Fas ligand (CD95L) and tumor necrosis factor-α (TNF-α) are pivotal inducers of hepatocyte apoptosis. Uncontrolled activation of these two systems is involved in several forms of liver injury. Although the broad antiapoptotic action of Bcl-2 and Bcl-xL has been clearly established in various apoptotic pathways, their ability to inhibit the Fas/CD95- and TNF-α-mediated apoptotic signal has remained controversial. We have demonstrated that the expression of BCL-2 in hepatocytes protects them against Fas-induced fulminant hepatitis in transgenic mice. The present study shows that transgenic mice overexpressing[Formula: see text]in hepatocytes are also protected from Fas-induced apoptosis in a dose-dependent manner. Bcl-xL and Bcl-2 were protective without any change in the level of endogenous[Formula: see text]or Bax and inhibited hepatic caspase-3-like activity. In vivo injection of TNF-α caused massive apoptosis and death only when transcription was inhibited. Under these conditions,[Formula: see text]mice were partially protected from liver injury and death but PK-BCL-2 mice were not. A similar differential protective effect of Bcl-xL and Bcl-2 transgenes was observed when Fas/CD95 was activated and transcription blocked. These results suggest that apoptosis triggered by activation of both Fas/CD95 and TNF-α receptors is to some extent counteracted by the transcription-dependent protective effects, which are essential for the antiapoptotic activity of Bcl-2 but not of Bcl-xL. Therefore, Bcl-xL and Bcl-2 appear to have different antiapoptotic effects in the liver whose characterization could facilitate their use to prevent the uncontrolled apoptosis of hepatocytes.


1999 ◽  
Vol 276 (3) ◽  
pp. F390-F397 ◽  
Author(s):  
Yan-Lin Guo ◽  
Baobin Kang ◽  
Li-Jun Yang ◽  
John R. Williamson

It has been proposed that ceramide acts as a cellular messenger to mediate tumor necrosis factor-α (TNF-α)-induced apoptosis. Based on this hypothesis, it was postulated that resistance of some cells to TNF-α cytotoxicity was due to an insufficient production of ceramide on stimulation by TNF-α. The present study was initiated to investigate whether this was the case in mesangial cells, which normally are insensitive to TNF-α-induced apoptosis. Our results indicate that although C2ceramide was toxic to mesangial cells, the cell death it induced differed both morphologically and biochemically from that induced by TNF-α in the presence of cycloheximide (CHX). The most apparent effect of C2ceramide was to cause cells to swell, followed by disruption of the cell membrane. It is evident that C2ceramide caused cell death by necrosis, whereas TNF-α in the presence of CHX killed the cells by apoptosis. C2ceramide did not mimic the effects of TNF-α on the activation of c-Jun NH2-terminal protein kinase and nuclear factor-κB transcription factor. Although mitogen-activated protein kinase [extracellular signal-related kinase (ERK)] was activated by both C2ceramide and TNF-α, such activation appeared to be mediated by different mechanisms as judged from the kinetics of ERK activation. Furthermore, the cleavage of cytosolic phospholipase A2during cell death induced by C2ceramide and by TNF-α in the presence of CHX showed distinctive patterns. The present study provides evidence that apoptosis and necrosis use distinctive signaling machinery to cause cell death.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Sihong Wang ◽  
Pohun C. Chen ◽  
Francois Berthiaume ◽  
Mehmet Toner ◽  
Arul Jayaraman ◽  
...  

The heat shock (HS) response is a protective mechanism for cells to protect themselves against subsequent lethal stress. HS upregulated heat shock protein (HSP) expression reduced apoptosis following tumor necrosis factor-α (TNF-α) stimulation. However, vector-mediated overexpression of HSP70 failed to provide similar protection but rather sensitized cells to TNF-α induced apoptosis. This may be due to the fact that the kinetics of vector-mediated HSP overexpression is totally different from that of HSP upregulation by HS. We hypothesized that the response depends on the timing of TNF-α challenge relative to HSP expression dynamics after HS. Therefore, we investigated the correlation between the dynamic change of HSP expression and the levels of apoptosis induced by TNF-α after HS. Hepatoma cells were subjected to mild heat shock at 42°C for 2 h followed by varied recovery times and then treated with TNF-α to induce apoptosis. The results from quantitative apoptosis assays using the TUNEL reaction reveal an optimal HS protection window centered around 5 h post-HS against TNF-α induced apoptosis. In addition, we found a window extending up to 2 h after HS where HS sensitized cells to TNF-α stress. Importantly, the correlation between apoptosis and HSP expression kinetics demonstrates that both high levels of HSPs and proper timing between HS and TNF-α stress were critical for optimal protection. Our study establishes a dynamic experimental model for further investigation of HS as a potential clinical approach to target tissue survival or death.


2016 ◽  
Vol 311 (5) ◽  
pp. R841-R850 ◽  
Author(s):  
Corinna Serviente ◽  
Lisa M. Troy ◽  
Maxine de Jonge ◽  
Daniel D. Shill ◽  
Nathan T. Jenkins ◽  
...  

Endothelial dysfunction and inflammation are characteristics of subclinical atherosclerosis and may increase through progressive menopausal stages. Evaluating endothelial responses to acute exercise can reveal underlying dysfunction not apparent in resting conditions. The purpose of this study was to investigate markers of endothelial function and inflammation before and after acute exercise in healthy low-active perimenopausal (PERI) and late postmenopausal (POST) women. Flow-mediated dilation (FMD), CD31+/CD42b− and CD62E+ endothelial microparticles (EMPs), and the circulating inflammatory factors monocyte chemoattractant protein 1 (MCP-1), interleukin 8 (IL-8), and tumor necrosis factor-α (TNF-α) were measured before and 30 min after acute exercise. Before exercise, FMD was not different between groups (PERI: 6.4 ± 0.9% vs. POST: 6.5 ± 0.8%, P = 0.97); however, after acute exercise PERI tended to improve FMD (8.5 ± 0.9%, P = 0.09), whereas POST did not (6.2 ± 0.8%, P = 0.77). Independent of exercise, we observed transient endothelial dysfunction in POST with repeated FMD measures. There was a group × exercise interaction for CD31+/CD42b− EMPs ( P = 0.04), where CD31+/CD42b− EMPs were similar before exercise (PERI: 57.0 ± 6.7 EMPs/μl vs. POST: 58.5 ± 5.3 EMPs/μl, P = 0.86) but were higher in POST following exercise (PERI: 48.2 ± 6.7 EMPs/μl vs. POST: 69.4 ± 5.3 EMPs/μl, P = 0.023). CD62E+ EMPs were lower in PERI compared with POST before exercise ( P < 0.001) and increased in PERI ( P = 0.04) but did not change in POST ( P = 0.68) in response to acute exercise. After acute exercise, MCP-1 ( P = 0.055), TNF-α ( P = 0.02), and IL-8 ( P < 0.001) were lower in PERI but only IL-8 decreased in POST ( P < 0.001). Overall, these data suggest that perimenopausal and late postmenopausal women display different endothelial and inflammatory responses to acute exercise.


2001 ◽  
Vol 276 (50) ◽  
pp. 47202-47211 ◽  
Author(s):  
Adeeb M. Al-Zoubi ◽  
Elena V. Efimova ◽  
Shashi Kaithamana ◽  
Osvaldo Martinez ◽  
Mohammed El-Azami El-Idrissi ◽  
...  

We identified a novel cDNA (IG20) that is homologous to cDNAs encoding a proteindifferentiallyexpressed innormal andneoplastic cells (DENN-SV) and human MADD (MAPK-activatingdeathdomain-containing protein). Furthermore, we show that the above variants most likely result from alternative splicing of a single gene. Functional analyses of these variants in permanently transfected HeLa cells revealed that IG20 and DENN-SV render them more susceptible or resistant to tumor necrosis factor α (TNF-α)-induced apoptosis, respectively. All variants tested could interact with TNF receptor 1 and activate ERK and nuclear factor κB. However, relative to control cells, only cells expressing IG20 showed enhanced TNF-α-induced activation of caspase-8 and -3, whereas cells expressing DENN-SV showed either reduced or no caspase activation. Transfection of these cells with a cDNA encoding CrmA maximally inhibited apoptosis in HeLa-IG20 cells. Our results show that IG20 can promote TNF-α-induced apoptosis and activation of caspase-8 and -3 and suggest that it may play a novel role in the regulation of the pleiotropic effects of TNF-α through alternative splicing.


2021 ◽  
Vol 11 (12) ◽  
pp. 1282
Author(s):  
Sheng-Yu Lee ◽  
Tzu-Yun Wang ◽  
Ru-Band Lu ◽  
Liang-Jen Wang ◽  
Cheng-Ho Chang ◽  
...  

We have previously identified five candidate proteins (matrix metallopeptidase 9 (MMP9), phenylalanyl-TRNA synthetase subunit beta (FARSB), peroxiredoxin 2 (PRDX2), carbonic anhydrase 1 (CA-1), and proprotein convertase subtilisin/kexin Type 9 (PCSK9)) as potential biomarkers for bipolar II disorder (BD-II). These candidate proteins have been associated with neuroprotective factors (BDNF) and inflammatory factors (cytokines, C-reactive protein (CRP), and tumor necrosis factor-α (TNF-α)). However, the correlations between these proteins with plasma BDNF and inflammatory factors remain unknown. We recruited a total of 185 patients with BD-II and 186 healthy controls. Plasma levels of candidate proteins, BDNF, cytokines (TNF-α, CRP, and interleukin-8 (IL-8)) were assessed from each participant. The correlations between levels of candidate proteins, BDNF, and cytokines were analyzed. In the BD-II group, we found that the level of FARSB was positively correlated with the BDNF level (r = 0.397, p < 0.001) and IL-8 (r = 0.320, p < 0.001). The CA-1 level positively correlated with IL-8 (r = 0.318, p < 0.001). In the control group, we found that the FARSB level positively correlated with the BDNF level (r = 0.648, p < 0.001). The CA-1 level positively correlated with TNF-α (r = 0.231, p = 0.002), while the MMP-9 level positively correlated with the CRP level (r = 0.227, p = 0.002). Our results may help in clarifying the underlying mechanism of these candidate proteins for BD-II.


2020 ◽  
Author(s):  
Zhi Huang ◽  
Yuanyu Feng ◽  
Xiaoxi Zhu ◽  
Lin Wang ◽  
Wei Lu

Abstract Background: Osteoarthritis is currently one of the most common chronic diseases. As life expectancy increases, its prevalence and incidence are expected to rise. At present, more and more evidences prove the correlation between the complement system and OA. This study aims to investigate complement C5's influence on the effect of MK801 on osteoarthritis synovial fibroblasts (OA-SFs).Methods: We used IL-1b to induce OA-SFs derived from mice to obtain OA-SFs. And we performed RT-PCR and Western Blot assays to evaluate the expression levels of associated mRNA and protein. The alteration of MAC expression on OA-SFs cell membrane was evaluated by immunofluorescence assay. The expression of related inflammatory factors of OA-SFs was evaluated by ELISA experiment.Results: MK801 could significantly inhibit the expression of osteoarthritis (OA) marker factors, such as: membrane attack complex (MAC), tumor necrosis factor-α (TNF-α) and matrix metalloproteinase-13 (MMP13). Meanwhile, MK801 can significantly inhibit the expression of complement C5 (C5) in OA-SFs. Immunofluorescence assay showed that MAC expression on OA-SFs cell membrane was significantly inhibited by MK801. The nucleo-plasmic separation experiment demonstrated that MK801 could significantly inhibit the activation of Nuclear factor-κB (NF-κB) signaling pathway in OA-SFs. Futhermore, koncking down the expression of C5 reversed the inhibition MK801 on the expression of OA-SFs inflammatory factors.Conclusions: These results illustrated two points: first, MK801 inhibited the generation of MAC and the release of inflammation factors in OA-SFs through C5; second: MK801 inhibited the activation of NF-κB signaling pathway in OA-SFs.


Sign in / Sign up

Export Citation Format

Share Document