scholarly journals Activity-Dependent Neuroprotective Protein (ADNP)-Derived Peptide (NAP) Counteracts UV-B Radiation-Induced ROS Formation in Corneal Epithelium

Antioxidants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Grazia Maugeri ◽  
Agata Grazia D’Amico ◽  
Salvatore Giunta ◽  
Cesarina Giallongo ◽  
Daniele Tibullo ◽  
...  

The corneal epithelium, the outermost layer of the cornea, acts as a dynamic barrier preventing access to harmful agents into the intraocular space. It is subjected daily to different insults, and ultraviolet B (UV-B) irradiation represents one of the main causes of injury. In our previous study, we demonstrated the beneficial effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against UV-B radiation damage in the human corneal endothelium. Some of its effects are mediated through the activation of the intracellular factor, known as the activity-dependent protein (ADNP). In the present paper, we have investigated the role of ADNP and the small peptide derived from ADNP, known as NAP, in the corneal epithelium. Here, we have demonstrated, for the first time, ADNP expression in human and rabbit corneal epithelium as well as its protective effect by treating the corneal epithelial cells exposed to UV-B radiations with NAP. Our results showed that NAP treatment prevents ROS formation by reducing UV-B-irradiation-induced apoptotic cell death and JNK signalling pathway activation. Further investigations are needed to deeply investigate the possible therapeutic use of NAP to counteract corneal UV-B damage.

2020 ◽  
Vol 16 (2) ◽  
pp. 102-108
Author(s):  
Carolina F. Assumpção ◽  
Médelin M. da Silva ◽  
Vanessa S. Hermes ◽  
Annamaria Ranieri ◽  
Ester A. Ferreira ◽  
...  

Background: Ultraviolet B (UV-B) radiation is a promising and environmentally friendly technique, which in a low flow rate, can induce bioactive compound synthesis. This work aimed at evaluating the effectiveness of post-harvest UV-B treatment in order to improve carotenoid content in climacteric fruits like persimmon and guava fruits. Methods: The fruits were harvested at commercial maturity and placed into climatic chambers equipped with UV-B lamps. For control treatment, the UV-B lamps were covered by a benzophenone film, known to block the radiation. This radiation was applied during 48 hours and fruits were sampled at 25, 30 and 48 hours of each treatment. HPLC analysis was performed to separate and identify carotenoid compounds from fruit skin after a saponification process. Results: Fruit from 30 hours treatment began to present a carotenoid accumulation since the majority of analyzed compounds exhibited its synthesis stimulated from this time on. In persimmon skin, it was observed that the maximum content was reached after 48 hours of UV-B treatment. Conclusion: These results suggest that this post-harvest UV-B treatment can be an innovative and a viable method to induce beneficial effects on guava and mainly on persimmon fruit.


2019 ◽  
Vol 15 ◽  
pp. P654-P654
Author(s):  
G. Aleph Prieto ◽  
Erica D. Smith ◽  
Liqi Tong ◽  
Michelle Nguyen ◽  
Carl W. Cotman

Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 818
Author(s):  
Soraya Mousavi ◽  
Dennis Weschka ◽  
Stefan Bereswill ◽  
Markus Heimesaat

Human campylobacteriosis, commonly caused by Campylobacter jejuni, is a food-borne infection with rising prevalence causing significant health and socioeconomic burdens worldwide. Given the threat from emerging antimicrobial resistances, the treatment of infectious diseases with antibiotics-independent natural compounds is utmost appreciated. Since the health-beneficial effects of cumin-essential-oil (EO) have been known for centuries, its potential anti-pathogenic and immune-modulatory effects during acute experimental campylobacteriosis were addressed in the present study. Therefore, C. jejuni-challenged secondary abiotic IL-10-/- mice were treated perorally with either cumin-EO or placebo starting on day 2 post-infection. On day 6 post-infection, cumin-EO treated mice harbored lower ileal pathogen numbers and exhibited a better clinical outcome when compared to placebo controls. Furthermore, cumin-EO treatment alleviated enteropathogen-induced apoptotic cell responses in colonic epithelia. Whereas, on day 6 post-infection, a dampened secretion of pro-inflammatory mediators, including nitric oxide and IFN-γ to basal levels, could be assessed in mesenteric lymph nodes of cumin-EO treated mice, systemic MCP-1 concentrations were elevated in placebo counterparts only. In conclusion, our preclinical intervention study provides first evidence for promising immune-modulatory effects of cumin-EO in the combat of human campylobacteriosis. Future studies should address antimicrobial and immune-modulatory effects of natural compounds as adjunct antibiotics-independent treatment option for infectious diseases.


Dose-Response ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 155932582098216
Author(s):  
Bing Wang ◽  
Kaoru Tanaka ◽  
Takanori Katsube ◽  
Kouichi Maruyama ◽  
Yasuharu Ninomiya ◽  
...  

Radioadaptive response (RAR) describes a phenomenon in a variety of in vitro and in vivo systems that a low-dose of priming ionizing radiation (IR) reduces detrimental effects of a subsequent challenge IR at higher doses. Among in vivo investigations, studies using the mouse RAR model (Yonezawa Effect) showed that RAR could significantly extenuate high-dose IR-induced detrimental effects such as decrease of hematopoietic stem cells and progenitor cells, acute radiation hematopoietic syndrome, genotoxicity and genomic instability. Meanwhile, it has been demonstrated that diet intervention has a great impact on health, and dietary restriction shows beneficial effects on numerous diseases in animal models. In this work, by using the mouse RAR model and mild dietary restriction (MDR), we confirmed that combination of RAR and MDR could more efficiently reduce radiogenotoxic damage without significant change of the RAR phenotype. These findings suggested that MDR may share some common pathways with RAR to activate mechanisms consequently resulting in suppression of genotoxicity. As MDR could also increase resistance to chemotherapy and radiotherapy in normal cells, we propose that combination of MDR, RAR, and other cancer treatments (i.e., chemotherapy and radiotherapy) represent a potential strategy to increase the treatment efficacy and prevent IR risk in humans.


1998 ◽  
Vol 17 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Shizuya Saika ◽  
Yoshiji Kawashima ◽  
Yuka Okada ◽  
Sai-Ichi Tanaka ◽  
Osamu Yamanaka ◽  
...  

2008 ◽  
Vol 389 (3) ◽  
pp. 273-277 ◽  
Author(s):  
Jose Viña ◽  
Juan Sastre ◽  
Federico V. Pallardó ◽  
Juan Gambini ◽  
Consuelo Borrás

Abstract Females live longer than males. We have shown that the higher levels of estrogens in females protect them against aging, by up-regulating the expression of antioxidant, longevity-related genes, such as that of selenium-dependent glutathione peroxidase (GPx) and Mn-superoxide dismutase (Mn-SOD). Both estradiol and genistein (the most abundant phytoestrogen in soybeans) share chemical properties which confer antioxidant features to these compounds. However, the low concentration of estrogens and phytoestrogens make it unlikely that they exhibit significant antioxidant capacity in the organism. Physiological concentrations of estrogens and nutritionally relevant concentrations of genistein activate the MAP kinase pathway. These, in turn, activate the nuclear factor kappa B (NF-κB) signaling pathway. Activation of NF-κB by estrogens subsequently activates the expression of Mn-SOD and GPx, but genistein is only capable of activating Mn-SOD expression. This could be due to the fact that genistein binds preferably to estrogen receptor β. The antioxidant protection is reflected in the lower peroxide levels found in cells treated with estrogens or phytoestrogens when compared with controls. The challenge for the future is to find molecules that have the beneficial effects of estradiol, but without its feminizing effects. Phytoestrogens or phytoestrogen-related molecules may be good candidates to meet this challenge.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mingsen Li ◽  
Liqiong Zhu ◽  
Jiafeng Liu ◽  
Huaxing Huang ◽  
Huizhen Guo ◽  
...  

AbstractForkhead box C1 (FOXC1) is required for neural crest and ocular development, and mutations in FOXC1 lead to inherited Axenfeld–Rieger syndrome. Here, we find that FOXC1 and paired box 6 (PAX6) are co-expressed in the human limbus and central corneal epithelium. Deficiency of FOXC1 and alternation in epithelial features occur in patients with corneal ulcers. FOXC1 governs the fate of the corneal epithelium by directly binding to lineage-specific open promoters or enhancers marked by H3K4me2. FOXC1 depletion not only activates the keratinization pathway and reprograms corneal epithelial cells into skin-like epithelial cells, but also disrupts the collagen metabolic process and interferon signaling pathways. Loss of interferon regulatory factor 1 and PAX6 induced by FOXC1 dysfunction is linked to the corneal ulcer. Collectively, our results reveal a FOXC1-mediated regulatory network responsible for corneal epithelial homeostasis and provide a potential therapeutic target for corneal ulcer.


Sign in / Sign up

Export Citation Format

Share Document