scholarly journals Anti-Inflammatory and Antioxidant Activity of Pollen Extract Collected by Scaptotrigona affinis postica: in silico, in vitro, and in vivo Studies

Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 103 ◽  
Author(s):  
Alberto Jorge Oliveira Lopes ◽  
Cleydlenne Costa Vasconcelos ◽  
João Batista Santos Garcia ◽  
Myssa Sued Dória Pinheiro ◽  
Francisco Assis Nascimento Pereira ◽  
...  

Bees are of great importance for plant diversity for being an important pollinating agents. Stingless bees such as Scaptotrigona affinis postica, is cultivated largely due to the products offered by it. Pollen is one of these products, which has been highlighted for exhibit various therapeutic properties. Considering the bioactivity of this natural product, this study investigated the antioxidant, anti-inflammatory, antinociceptive activities, and elucidated the chemical composition of pollen collected extract by Scaptotrigona affinis postica. Using in vitro assays, the antioxidant potential and inhibitory activity against the COX enzyme from pollen extract was evaluated. Additionally, tests were performed to measure the anti-inflammatory and antinociceptive activities in animal models. In our results, we found that pollen extract showed antioxidant effects and inhibitory activity against the COX enzyme. The in vivo assays showed that the extract acts on the nervous system in local and systemic levels and that the anti-inflammatory activity is due the prostanoids reducing. Chemical analyses recognize 10 molecules in the extract belonging to the polyphenol and flavonoids classes and the computational study suggests that is responsible for the observed results. Thus, it is reported for the first time the biological potential of S. aff. postica pollen extract and we conclude that this bee product can be considered as one source of potential new drugs.

2019 ◽  
Vol 20 (18) ◽  
pp. 4512 ◽  
Author(s):  
Alberto Jorge Oliveira Lopes ◽  
Cleydlenne Costa Vasconcelos ◽  
Francisco Assis Nascimento Pereira ◽  
Rosa Helena Moraes Silva ◽  
Pedro Felipe dos Santos Queiroz ◽  
...  

The stingless bee, Melipona fasciculata Smith (Apidae, Meliponini), is a native species from Brazil. Their products have high biotechnological potential, however there are no studies about the biological activities of pollen collected by M. fasciculata. In this context, the present study investigated the chemical composition, anti-oxidant, anti-inflammatory, and analgesic activities of hydroethanolic pollen extracts collected by M. fasciculata in three cities in Maranhão State, Brazil. We verified the antioxidant activity of the extracts and inhibitory activity against the cyclooxygenase enzyme using in vitro assays and in allowed to select the extract with higher efficiency to be used on in vivo assays. In these trials, the selected extract showed high anti-inflammatory activity as well as nociceptive effects at central and peripheral level, suggesting that this extract acts on inhibition of histamine release and decreased synthesis of prostaglandins and the in-silico study suggested that polyphenols and acids fatty acids in the extract may be associated with these activities. The results of the present study report the high biological potential of pollen extract and we conclude that the pollen collected by M. fasciculata can be considered as the object of research for new pharmacological alternatives.


2021 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Ana Flávia Da Silva Chagas ◽  
Marina Porchia ◽  
Francesco Tisato ◽  
Pauline De Faria Soldera ◽  
Claudia Dantas Comandolli Wyrepkowski ◽  
...  

In the research for the development of new drugs for the therapy of American tegumentary leishmaniasis, copper has been studied for its antileishmania activity. This study aims to report the activity of three copper(I) complexes on parasites of the species L. amazonensis and L. guyanensis. The metal complexes were tested according to in vitro antileishmanial assays, against promastigote and amastigote forms of the most prevalent species in the state of Amazonas, Brazil. Cytotoxicity of the complexes was evaluated in murine macrophage-like cell line (MJ774). The results of the in vitro assays indicated that, among the copper complexes tested, the homoleptic phosphine complex [Cu(thp)4][PF6](thp=tris-hydroxymethylphosphine) presented promising activity against the evolutionary forms of L. amazonensis, and obtained a IC50 of  26.45 and 24.61 µM in a period of 48 and 72 h, respectively. The results for copper complex at concentration 160 µM in amastigote forms showed a decrease in the infection index (32% of infected cells) and, in the cytotoxicity assay with MJ774, 52.43% of cell viability was observed. The results showed that the complex [Cu(thp)4][PF6] presented significant biological activity, indicating a need for future in vivo studies.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Julie Melendez ◽  
Daniel Sieiro ◽  
David Salgado ◽  
Valérie Morin ◽  
Marie-Julie Dejardin ◽  
...  

AbstractFusion of nascent myoblasts to pre-existing myofibres is critical for skeletal muscle growth and repair. The vast majority of molecules known to regulate myoblast fusion are necessary in this process. Here, we uncover, through high-throughput in vitro assays and in vivo studies in the chicken embryo, that TGFβ (SMAD2/3-dependent) signalling acts specifically and uniquely as a molecular brake on muscle fusion. While constitutive activation of the pathway arrests fusion, its inhibition leads to a striking over-fusion phenotype. This dynamic control of TGFβ signalling in the embryonic muscle relies on a receptor complementation mechanism, prompted by the merging of myoblasts with myofibres, each carrying one component of the heterodimer receptor complex. The competence of myofibres to fuse is likely restored through endocytic degradation of activated receptors. Altogether, this study shows that muscle fusion relies on TGFβ signalling to regulate its pace.


2021 ◽  
Vol 14 (12) ◽  
pp. 1248
Author(s):  
Muhammad Waleed Baig ◽  
Humaira Fatima ◽  
Nosheen Akhtar ◽  
Hidayat Hussain ◽  
Mohammad K. Okla ◽  
...  

Exploration of leads with therapeutic potential in inflammatory disorders is worth pursuing. In line with this, the isolated natural compound daturaolone from Datura innoxia Mill. was evaluated for its anti-inflammatory potential using in silico, in vitro and in vivo models. Daturaolone follows Lipinski’s drug-likeliness rule with a score of 0.33. Absorption, distribution, metabolism, excretion and toxicity prediction show strong plasma protein binding; gastrointestinal absorption (Caco-2 cells permeability = 34.6 nm/s); no blood–brain barrier penetration; CYP1A2, CYP2C19 and CYP3A4 metabolism; a major metabolic reaction, being aliphatic hydroxylation; no hERG inhibition; and non-carcinogenicity. Predicted molecular targets were mainly inflammatory mediators. Molecular docking depicted H-bonding interaction with nuclear factor kappa beta subunit (NF-κB), cyclooxygenase-2, 5-lipoxygenase, phospholipase A2, serotonin transporter, dopamine receptor D1 and 5-hydroxy tryptamine. Its cytotoxicity (IC50) value in normal lymphocytes was >20 µg/mL as compared to cancer cells (Huh7.5; 17.32 ± 1.43 µg/mL). Daturaolone significantly inhibited NF-κB and nitric oxide production with IC50 values of 1.2 ± 0.8 and 4.51 ± 0.92 µg/mL, respectively. It significantly reduced inflammatory paw edema (81.73 ± 3.16%), heat-induced pain (89.47 ± 9.01% antinociception) and stress-induced depression (68 ± 9.22 s immobility time in tail suspension test). This work suggests a possible anti-inflammatory role of daturaolone; however, detailed mechanistic studies are still necessary to corroborate and extrapolate the findings.


Author(s):  
Serda Kecel Gunduz ◽  
Bilge Bicak ◽  
Aysen E. Ozel

In this chapter, computational approaches for the discovery of new drugs that are useful for diagnosis and treatment of disease will be described in three parts. MD technique uniquely supports protein design attempts by giving information about protein dynamics associated with atomic-level descriptions of the relationship between dynamics and function. The purpose of molecular docking is to provide an estimate of the ligand-receptor complex structure using computational methods. By this estimation, the mechanism of drug binding and action are described by determining the three-dimensional simulation of drug and drug-induced macrostructure. ADME characteristics are physicochemically significant descriptors and pharmacokinetically relevant properties used to design more effective drugs and new analogs. As a result, in-silico calculations can provide robust preliminary information as to drug activity and mechanism in the drug production process, as well as in vitro and in vivo studies.


2019 ◽  
Vol 156 (6) ◽  
pp. S-623
Author(s):  
Julia B. Krajewska ◽  
Jakub Wlodarczyk ◽  
Przemyslaw Taciak ◽  
Remigiusz Szczepaniak ◽  
Jakub Fichna

2015 ◽  
Vol 18 (4) ◽  
pp. 713 ◽  
Author(s):  
Jody K Takemoto ◽  
Connie M. Remsberg ◽  
Neal M. Davies

Purpose: Delineate the selected pharmacodynamics of a naturally occurring stilbene 3’-Hydroxypterostilbene. Objective: Characterize for the first time the pharmacodynamics bioactivity in several in-vitro assays with relevant roles in heart disease, inflammation, cancer, and diabetes etiology and pathophysiology. Methods: 3’-Hydroxypterostilbene was studied in in-vitro assays to identify possible bioactivity. Results: 3’-Hydroxypterostilbene demonstrated anti-oxidant, anti-inflammatory, cytotoxic, anti-adipogenic, histone deacetylase, and sirtuin-1 inhibitory activity. Conclusions: The importance of understanding individual stilbene pharmacologic activities were delineated.  Small changes in chemical structure of stilbene compounds result in significant pharmacodynamic differences. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2020 ◽  
Vol 21 (7) ◽  
pp. 2591
Author(s):  
Pablo Silva ◽  
Maria de Almeida ◽  
Jamire Silva ◽  
Sonaly Albino ◽  
Renan Espírito-Santo ◽  
...  

The compound (E)-2-cyano-3-(1H-indol-3-yl)-N-phenylacrylamide (ICMD-01) was designed and developed based on the structures of clinically relevant drugs indomethacin and paracetamol through the molecular hybridization strategy. This derivative was obtained by an amidation reaction between substituted anilines and ethyl 2-cyanoacetate followed by a Knoevenagel-type condensation reaction with indole aldehyde that resulted in both a viable synthesis and satisfactory yield. In order to assess the immunomodulatory and anti-inflammatory activity, in vitro assays were performed in J774 macrophages, and significant inhibitions (p < 0.05) of the production of nitrite and the production of cytokines (IL-1β and TNFα) in noncytotoxic concentrations were observed. The anti-inflammatory effect was also studied via CFA-induced paw edema in vivo tests and zymosan-induced peritonitis. In the paw edema assay, ICMD01 (50 mg kg−1) showed satisfactory activity, as did the group treated with dexamethasone, reducing edema in 2–6 h. In addition, there was no significant inhibition of PGE2, IL-1β or TNFα in vivo. Moreover, in the peritonitis assay that assesses leukocyte migration, ICMD-01 exhibited promising results. Therefore, these preliminary studies demonstrate this compound to be a strong candidate for an anti-inflammatory drug together with an improved gastrointestinal safety profile when compared to the conventional anti-inflammatory drugs.


Sign in / Sign up

Export Citation Format

Share Document