scholarly journals An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events

Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 216 ◽  
Author(s):  
Marika Cordaro ◽  
Salvatore Cuzzocrea ◽  
Rosalia Crupi

The inflammation process represents of a dynamic series of phenomena that manifest themselves with an intense vascular reaction. Neuroinflammation is a reply from the central nervous system (CNS) and the peripheral nervous system (PNS) to a changed homeostasis. There are two cell systems that mediate this process: the glia of the CNS and the lymphocites, monocytes, and macrophages of the hematopoietic system. In both the peripheral and central nervous systems, neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, and in neuropsychiatric illnesses, such as depression and autism spectrum disorders. The resolution of neuroinflammation is a process that allows for inflamed tissues to return to homeostasis. In this process the important players are represented by lipid mediators. Among the naturally occurring lipid signaling molecules, a prominent role is played by the N-acylethanolamines, namely N-arachidonoylethanolamine and its congener N-palmitoylethanolamine, which is also named palmitoylethanolamide or PEA. PEA possesses a powerful neuroprotective and anti-inflammatory power but has no antioxidant effects per se. For this reason, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treating neuroinflammation. The aim of this review is to discuss the role of ultramicronized PEA and co-ultramicronized PEA with luteolin in several neurological diseases using preclinical and clinical approaches.

2019 ◽  
Vol 51 (9) ◽  
pp. 432-442 ◽  
Author(s):  
Pan Xu ◽  
Ai Chen ◽  
Yipeng Li ◽  
Xuezhi Xing ◽  
Hui Lu

The medial prefrontal cortex (mPFC) is a crucial cortical region that integrates information from numerous cortical and subcortical areas and converges updated information to output structures. It plays essential roles in the cognitive process, regulation of emotion, motivation, and sociability. Dysfunction of the mPFC has been found in various neurological and psychiatric disorders, such as depression, anxiety disorders, schizophrenia, autism spectrum disorders, Alzheimer’s disease, Parkinson’s disease, and addiction. In the present review, we summarize the preclinical and clinical studies to illustrate the role of the mPFC in these neurological diseases.


2021 ◽  
Vol 13 ◽  
Author(s):  
Banglian Hu ◽  
Shengshun Duan ◽  
Ziwei Wang ◽  
Xin Li ◽  
Yuhang Zhou ◽  
...  

The colony-stimulating factor 1 receptor (CSF1R) is a key tyrosine kinase transmembrane receptor modulating microglial homeostasis, neurogenesis, and neuronal survival in the central nervous system (CNS). CSF1R, which can be proteolytically cleaved into a soluble ectodomain and an intracellular protein fragment, supports the survival of myeloid cells upon activation by two ligands, colony stimulating factor 1 and interleukin 34. CSF1R loss-of-function mutations are the major cause of adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and its dysfunction has also been implicated in other neurodegenerative disorders including Alzheimer’s disease (AD). Here, we review the physiological functions of CSF1R in the CNS and its pathological effects in neurological disorders including ALSP, AD, frontotemporal dementia and multiple sclerosis. Understanding the pathophysiology of CSF1R is critical for developing targeted therapies for related neurological diseases.


2012 ◽  
Vol 33 (5) ◽  
pp. 251-260 ◽  
Author(s):  
J. Michael Bowers ◽  
Genevieve Konopka

Autism spectrum disorders (ASD) is a neurodevelopmental disease with complex genetics; however, the genes that are responsible for this disease still remain mostly unknown. Here, we focus on the FOXP family of transcription factors as there is emerging evidence strongly linking these genes to ASD and other genes implicated in ASD. The FOXP family of genes includes three genes expressed in the central nervous system: FOXP1, FOPX2, and FOXP4. This unique group of transcription factors has known functions in brain development as well as the evolution of language. We will also discuss the other genes including transcriptional targets of FOXP genes that have been found to be associated with language and may be important in the pathophysiology of ASD. Finally, we will review the emerging animal models currently being used to study the function of the FOXP genes within the context of ASD symptomology. The combination of gene expression and animal behavior is critical for elucidating how genes such as the FOXP family members are key players within the framework of the developing brain.


2010 ◽  
Vol 21 (5-6) ◽  
pp. 394-408 ◽  
Author(s):  
Cláudia P. Figueiredo ◽  
Fabrício A. Pamplona ◽  
Tânia L. Mazzuco ◽  
Aderbal S. Aguiar ◽  
Roger Walz ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Bo Han ◽  
Tursonjan Tokay ◽  
Guangming Zhang ◽  
Peng Sun ◽  
Shangwei Hou

Ether-à-go-go1 (Eag1, Kv10.1, KCNH1) K+channel is a member of the voltage-gated K+channel family mainly distributed in the central nervous system and cancer cells. Like other types of voltage-gated K+channels, the EAG1 channels are regulated by a variety of endogenous signals including reactive oxygen species, rendering the EAG1 to be in the redox-regulated ion channel family. The role of EAG1 channels in tumor development and its therapeutic significance have been well established. Meanwhile, the importance of hEAG1 channels in the nervous system is now increasingly appreciated. The present review will focus on the recent progress on the channel regulation by endogenous signals and the potential functions of EAG1 channels in normal neuronal signaling as well as neurological diseases.


2021 ◽  
Author(s):  
Rafael Franco ◽  
Rafael Rivas-Santisteban ◽  
Gemma Navarro ◽  
Irene Reyes-Resina

The autism spectrum disorder (ASD) comprises a series of neurological diseases that share serious alterations of the development of the central nervous system. The degree of disability may vary so that Asperger’s may have a relatively normal life and get positions of responsibility in corporations and even in Governments, whereas other ASD sufferers are fully dependent on caregivers and have serious cognitive deficits. Although the first cases of autism were detected by looking at failures in metabolism, e.g., phenylketonuria, to later identify the faulty gene, today the trend is the opposite, first obtaining the exome and minimizing the look for altered parameters in blood, urine, etc. Cholesterol is key for neural development as it is not able to cross the blood brain barrier. Therefore, any gene or environmental factor that affects cholesterol synthesis will impact early developmental stages eventually leading to a disease within the autism spectrum and/or schizophrenia. This review provides data of the relevance of cholesterol dyshomeostasis in autism spectrum disorders. Determining biochemical parameters in body fluids should help to provide new therapeutic approaches in some cases of autism.


2019 ◽  
Vol 73 ◽  
pp. 865-886
Author(s):  
Aleksandra Szewczyk ◽  
Apolonia Witecka ◽  
Anna Kiersztan

According to current knowledge, the number of microorganisms living in our body slightly exceeds the number of our own cells, and most of them occupy the large intestine. New methods for analyzing microorganisms residing in our intestine (intestinal microbiota) enable a better understanding of their metabolic, protective and structural functions as well as complex interactions with the host. The development of microbiota is dynamic, and its composition may change during our lifetime. Many factors can affect the composition of microbiota, such as diet, stress, age, genetic factors and antibiotic therapy. Microbiota-gut-brain communication is bi-directional and is mediated via neuronal, immunological and humoral pathways. This article focuses on gut-brain axis elements, such as the vagus nerve, hypothalamic-pituitary-adrenal axis (HPA), cytokines, neurotransmitters, hormones and intestinal peptides, allowing microbiota to contact with the central nervous system. Moreover, this article shows the mechanisms by which microbiota affects the brain functions related to our behavior, mood and cognitive processes. In addition, the role of microbiota composition disorders in the pathogenesis of central nervous system diseases (such as depression, autism spectrum disorder, schizophrenia, multiple sclerosis, Parkinson’s disease and Alzheimer’s disease) is discussed. This article also focuses on the results from studies in which probiotics have been used as potential therapeutic agents in the treatment of gastrointestinal disorders and also alleviating the symptoms of the central nervous system diseases.


Author(s):  
Shih-Chen Fu ◽  
Chung-Han Lee ◽  
Hsiuying Wang

Over the past two decades, research into the role of the gut microbiome in regulating the central nervous system has rapidly increased. Several neurodevelopmental diseases have been linked to the unbalance of gut microbiota, including autism. Children on the autism spectrum often suffer from gastrointestinal symptoms, including constipation, which is four times more prevalent than it is in children without autism spectrum disorders (ASD). Although studies in animals have shown the crucial role of the microbiota in key aspects of neurodevelopment, there is currently no consensus on how the alteration of microbial composition affects the pathogenesis of ASD, let alone how it exerts an impact on the following comorbidities. In our study, we were able to control the effects of constipation on gut dysbiosis and distinguish neuropathological-related and gastrointestinal-related bacteria in ASD patients separately. By analyzing published data, eight additional bacteria significantly altered in autistic individuals were identified in our study. All of them had a decreased relative abundance in ASD patients, except Lactobacillaceae and Peptostreptococcaceae. Eighteen and eleven bacteria were significantly correlated with ASD symptoms and constipation, respectively. Among those, six bacteria were overlapped between the groups. We have found another six bacteria highly associated with constipation status in ASD patients only. By conducting Welch’s t-test, we were able to demonstrate the critical roles of microbes in ASD core and gastrointestinal symptoms and raised the hypotheses of their confounding and mediating effects on the relationship between the two symptoms.


Sign in / Sign up

Export Citation Format

Share Document