scholarly journals Involvement of l-Cysteine Desulfhydrase and Hydrogen Sulfide in Glutathione-Induced Tolerance to Salinity by Accelerating Ascorbate-Glutathione Cycle and Glyoxalase System in Capsicum

Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 603
Author(s):  
Cengiz Kaya ◽  
Bernardo Murillo-Amador ◽  
Muhammad Ashraf

The aim of this study is to assess the role of l-cysteine desulfhydrase (l-DES) and endogenous hydrogen sulfide (H2S) in glutathione (GSH)-induced tolerance to salinity stress (SS) in sweet pepper (Capsicum annuum L.). Two weeks after germination, before initiating SS, half of the pepper seedlings were retained for 12 h in a liquid solution containing H2S scavenger, hypotaurine (HT), or the l-DES inhibitor dl-propargylglycine (PAG). The seedlings were then exposed for three weeks to control or SS (100 mmol L−1 NaCl) and supplemented with or without GSH or GSH+NaHS (sodium hydrosulfide, H2S donor). Salinity suppressed dry biomass, leaf water potential, chlorophyll contents, maximum quantum efficiency, ascorbate, and the activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glyoxalase II in plants. Contrarily, it enhanced the accumulation of hydrogen peroxide, malondialdehyde, methylglyoxal, electrolyte leakage, proline, GSH, the activities of glutathione reductase, peroxidase, catalase, superoxide dismutase, ascorbate peroxidase, glyoxalase I, and l-DES, as well as endogenous H2S content. Salinity enhanced leaf Na+ but reduced K+; however, the reverse was true with GSH application. Overall, the treatments, GSH and GSH+NaHS, effectively reversed the oxidative stress and upregulated salt tolerance in pepper plants by controlling the activities of the AsA-GSH and glyoxalase-system-related enzymes as well as the levels of osmolytes.

2016 ◽  
Vol 46 (10) ◽  
pp. 1743-1749 ◽  
Author(s):  
Jin Feng Chen ◽  
Chan Jiao

ABSTRACT: As a gas signaling molecule, endogenous hydrogen sulfide (H2S) plays a crucial role in the plant stress response. However, the role of H2S in the response to organic pollutants specifically has not been studied. Here, the effects of H2S addition on soybean (Glycine max) seedlings tolerance of 1,4-dichlorobenzene (1,4-DCB) were investigated. Under 1,4-DCB stress, the growth of soybean seedlings roots and stems was inhibited, while L-/D-cysteine desulfhydrase (LCD/DCD) activity was induced and endogenous H2S increased. When applied jointly with sodium hydrosulfide (NaHS), a H2S donor, root growth inhibition was effectively alleviated. Pre-treatment of seedlings with 0.4mmol L-1 NaHS reduced the malondialdehyde (MDA) and reactived oxygen species (ROS) content, mitigating root cell toxicity significantly. Further experiments confirmed that NaHS enhanced soybean seedlings peroxidase (POD) and superoxide dismutase (SOD) enzyme activities. In contrast, these effects were reversed by hypotaurine (HT), a H2S scavenger. Therefore, H2S alleviated 1,4-DCB toxicity in soybean seedlings by regulating antioxidant enzyme activity to reduce cell oxidative damage.


2013 ◽  
Vol 82 (4) ◽  
pp. 295-302 ◽  
Author(s):  
Peining Fu ◽  
Wenjie Wang ◽  
Lixia Hou ◽  
Xin Liu

Hydrogen sulfide (H<sub>2</sub>S) is an important signaling molecule involved in several stress-resistance processes in plants, such as drought and heavy metal stresses. However, little is known about the roles of H<sub>2</sub>S in responses to chilling stress. In this paper, we demonstrated that chilling stress enhance the H<sub>2</sub>S levels, the H<sub>2</sub>S synthetase (L-/D-cysteine desulfhydrase, L/DCD) activities, and the expression of L/DCD gene in <em>Vitis vinifera</em> L. ‘F-242’. Furthermore, the seedlings were treated with sodium hydrosulfide (NaHS, a H<sub>2</sub>S donor) and hypotaurine (HT, a H<sub>2</sub>S scavenger) at 4°C to examine the effects of exogenous H<sub>2</sub>S on grape. The results revealed that the high activity of superoxide dismutase and enhanced expression of <em>VvICE1</em> and <em>VvCBF3</em> genes, but low level of super oxide anion radical, malondialdehyde content and cell membrane permeability were detected after addition of NaHS. In contrast, HT treatment displayed contrary effect under the chilling temperature. Taken together, these data suggested that H<sub>2</sub>S might be directly involved in the cold signal transduction pathway of grape.


2018 ◽  
Vol 19 (12) ◽  
pp. 3981 ◽  
Author(s):  
M. Khan ◽  
Fahad AlZuaibr ◽  
Asma Al-Huqail ◽  
Manzer Siddiqui ◽  
Hayssam M. Ali ◽  
...  

Hydrogen sulfide (H2S) has emerged as an important signaling molecule and plays a significant role during different environmental stresses in plants. The present work was carried out to explore the potential role of H2S in reversal of dehydration stress-inhibited O-acetylserine (thiol) lyase (OAS-TL), l-cysteine desulfhydrase (LCD), and d-cysteine desulfhydrase (DCD) response in arugula (Eruca sativa Mill.) plants. Dehydration-stressed plants exhibited reduced water status and increased levels of hydrogen peroxide (H2O2) and superoxide (O2•−) content that increased membrane permeability and lipid peroxidation, and caused a reduction in chlorophyll content. However, H2S donor sodium hydrosulfide (NaHS), at the rate of 2 mM, substantially reduced oxidative stress (lower H2O2 and O2•−) by upregulating activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and increasing accumulation of osmolytes viz. proline and glycine betaine (GB). All these, together, resulted in reduced membrane permeability, lipid peroxidation, water loss, and improved hydration level of plants. The beneficial role of H2S in the tolerance of plants to dehydration stress was traced with H2S-mediated activation of carbonic anhydrase activity and enzyme involved in the biosynthesis of cysteine (Cys), such as OAS-TL. H2S-treated plants showed maximum Cys content. The exogenous application of H2S also induced the activity of LCD and DCD enzymes that assisted the plants to synthesize more H2S from accumulated Cys. Therefore, an adequate concentration of H2S was maintained, that improved the efficiency of plants to mitigate dehydration stress-induced alterations. The central role of H2S in the reversal of dehydration stress-induced damage was evident with the use of the H2S scavenger, hypotaurine.


2015 ◽  
Vol 309 (11) ◽  
pp. E925-E935 ◽  
Author(s):  
Li Sun ◽  
Song Zhang ◽  
Chengyuan Yu ◽  
Zhenwei Pan ◽  
Yang Liu ◽  
...  

Autophagy plays an important role in liver triglyceride (TG) metabolism. Inhibition of autophagy could reduce the clearance of TG in the liver. Hydrogen sulfide (H2S) is a potent stimulator of autophagic flux. Recent studies showed H2S is protective against hypertriglyceridemia (HTG) and noalcoholic fatty liver disease (NAFLD), while the mechanism remains to be explored. Here, we tested the hypothesis that H2S reduces serum TG level and ameliorates NAFLD by stimulating liver autophagic flux by the AMPK-mTOR pathway. The level of serum H2S in patients with HTG was lower than that of control subjects. Sodium hydrosulfide (NaHS, H2S donor) markedly reduced serum TG levels of male C57BL/6 mice fed a high-fat diet (HFD), which was abolished by coadministration of chloroquine (CQ), an inhibitor of autophagic flux. In HFD mice, administration of NaSH increased the LC3BII-to-LC3BI ratio and decreased the p62 protein level. Meanwhile, NaSH increased the phosphorylation of AMPK and thus reduced the phosphorylation of mTOR in a Western blot study. In cultured LO2 cells, high-fat treatment reduced the ratio of LC3BII to LC3BI and the phosphorylation of AMPK, which were reversed by the coadministration of NaSH. Knockdown of AMPK by siRNA in LO2 cells blocked the autophagic enhancing effects of NaSH. The same qualitative effect was observed in AMPKα2−/− mice. These results for the first time demonstrated that H2S could reduce serum TG level and ameliorate NAFLD by activating liver autophagy via the AMPK-mTOR pathway.


2019 ◽  
Vol 99 (3) ◽  
pp. 283-298 ◽  
Author(s):  
Yudong Mei ◽  
Yingying Zhao ◽  
Xinxin Jin ◽  
Ren Wang ◽  
Na Xu ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Longna Li ◽  
Yuhao Liu ◽  
Shu Wang ◽  
Jianxin Zou ◽  
Wenjiang Ding ◽  
...  

Magnesium hydride (MgH2) is a promising solid-state hydrogen source with high storage capacity (7.6 wt%). Although it is recently established that MgH2 has potential applications in medicine because it sustainably supplies hydrogen gas (H2), the biological functions of MgH2 in plants have not been observed yet. Also, the slow reaction kinetics restricts its practical applications. In this report, MgH2 (98% purity; 0.5–25 μm size) was firstly used as a hydrogen generation source for postharvest preservation of flowers. Compared with the direct hydrolysis of MgH2 in water, the efficiency of hydrogen production from MgH2 hydrolysis could be greatly improved when the citrate buffer solution is introduced. These results were further confirmed in the flower vase experiment by showing higher efficiency in increasing the production and the residence time of H2 in solution, compared with hydrogen-rich water. Mimicking the response of hydrogen-rich water and sodium hydrosulfide (a hydrogen sulfide donor), subsequent experiments discovered that MgH2-citrate buffer solution not only stimulated hydrogen sulfide (H2S) synthesis but also significantly prolonged the vase life of cut carnation flowers. Meanwhile, redox homeostasis was reestablished, and the increased transcripts of representative senescence-associated genes, including DcbGal and DcGST1, were partly abolished. By contrast, the discussed responses were obviously blocked by the inhibition of endogenous H2S with hypotaurine, an H2S scavenger. These results clearly revealed that MgH2-supplying H2 could prolong the vase life of cut carnation flowers via H2S signaling, and our results, therefore, open a new window for the possible application of hydrogen-releasing materials in agriculture.


2019 ◽  
Vol 97 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Kürşad Aytekin ◽  
Selma Şengiz Erhan ◽  
Züleyha Erişgin ◽  
Cem Zeki Esenyel ◽  
Selçuk Takır

Hydrogen sulfide (H2S) is found in both the plasma and synovial fluid of patients with gonarthrosis. In the present study, we investigated whether intra-articular injection of sodium hydrosulfide (NaSH) (1 mM, 30 μL), a H2S donor, might affect gonarthrosis in rats. Gonarthrosis was induced surgically in the left knees of rats and left for 6 weeks for the development of disease. Then, intra-articular injections of NaSH or methylprednisolone (1 mg/kg, 30 μL) were administered to rats. Half of each group was sacrificed at the end of the first day and the other half was sacrificed at the end of 4 weeks to evaluate early and later effects of injections on gonarthrosis. The injury induced by anterior cruciate ligament resection and medial meniscectomy in rats caused the development of gonarthrosis. As the duration lengthened after gonarthrosis induction, the progression of the disease continued. According to the modified Mankin Scoring System, intra-articular injection of NaSH histopathologically slowed the progression of gonarthrosis, whereas methylprednisolone was ineffective. In addition, NaSH decreased apoptosis in rat knees with gonarthrosis. Each treatment did not cause injury to healthy knees. Our results lead to the consideration that intra-articular NaSH administration may be effective in the progression of gonarthrosis.


Sign in / Sign up

Export Citation Format

Share Document