scholarly journals CDDO-Me Distinctly Regulates Regional Specific Astroglial Responses to Status Epilepticus via ERK1/2-Nrf2, PTEN-PI3K-AKT and NFκB Signaling Pathways

Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1026
Author(s):  
Ji-Eun Kim ◽  
Hana Park ◽  
Tae-Cheon Kang

2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid. CDDO-Me shows anti-inflammatory and neuroprotective effects. Furthermore, CDDO-Me has antioxidant properties, since it activates nuclear factor-erythroid 2-related factor 2 (Nrf2), which is a key player of redox homeostasis. In the present study, we evaluated whether CDDO-Me affects astroglial responses to status epilepticus (SE, a prolonged seizure activity) in the rat hippocampus in order to understand the underlying mechanisms of reactive astrogliosis and astroglial apoptosis. Under physiological conditions, CDDO-Me increased Nrf2 expression in the hippocampus without altering activities (phosphorylations) of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), phosphatidylinositol-3-kinase (PI3K), and AKT. CDDO-Me did not affect seizure activity in response to pilocarpine. However, CDDO-Me ameliorated reduced astroglial Nrf2 expression in the CA1 region and the molecular layer of the dentate gyrus (ML), and attenuated reactive astrogliosis and ML astroglial apoptosis following SE. In CA1 astrocytes, CDDO-Me inhibited the PI3K/AKT pathway by activating PTEN. In contrast, CDDO-ME resulted in extracellular signal-related kinases 1/2 (ERK1/2)-mediated Nrf2 upregulation in ML astrocytes. Furthermore, CDDO-Me decreased nuclear factor-κB (NFκB) phosphorylation in both CA1 and ML astrocytes. Therefore, our findings suggest that CDDO-Me may attenuate SE-induced reactive astrogliosis and astroglial apoptosis via regulation of ERK1/2-Nrf2, PTEN-PI3K-AKT, and NFκB signaling pathways.

2019 ◽  
Vol 20 (19) ◽  
pp. 4862 ◽  
Author(s):  
Min-Ju Kim ◽  
Hana Park ◽  
Seo-Hyeon Choi ◽  
Min-Jeong Kong ◽  
Ji-Eun Kim ◽  
...  

2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a triterpenoid analogue of oleanolic acid that has anti-inflammatory, antioxidant, and neuroprotective activities. In the present study, we evaluate the effects of CDDO-Me on serum extravasation and astroglial death in the rat piriform cortex (PC) induced by status epilepticus (a prolonged seizure activity, SE) in order to propose an underlying pharmacological mechanism of CDDO-Me and its availability for treatment of vasogenic edema. CDDO-Me effectively mitigated serum extravasation and a massive astroglial loss in the PC following SE. CDDO-Me abrogated tumor necrosis factor-α (TNF-α) synthesis in activated microglia by inhibiting nuclear factor-κB (NF-κB) p65 serine 276 phosphorylation. CDDO-Me also abolished NF-κB threonine 435 phosphorylation in endothelial cells and TNF-α-mediated-phosphatidylinositol-3-kinase (PI3K)/AKT/endothelial nitric oxide synthase (eNOS) signaling cascades, which trigger vasogenic edema following SE. Furthermore, CDDO-Me increased astroglial viability via the up-regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) expression. Therefore, our findings suggest that CDDO-Me may ameliorate SE-induced vasogenic edema formation by regulating NF-κB p65 phosphorylations in microglia as well as endothelial cells and enhancing Nrf2 expression in astrocytes, respectively.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1123 ◽  
Author(s):  
Ji-Eun Kim ◽  
Hana Park ◽  
Ji-Eun Lee ◽  
Tae-Cheon Kang

Following status epilepticus (SE, a prolonged seizure activity), microglial activation, and monocyte infiltration result in the inflammatory responses in the brain that is involved in the epileptogenesis. Therefore, the regulation of microglia/monocyte-mediated neuroinflammation is one of the therapeutic strategies for avoidance of secondary brain injury induced by SE. 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is an activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), which regulates intracellular redox homeostasis. In addition, CDDO-Me has anti-inflammatory properties that suppress microglial proliferation and its activation, although the underlying mechanisms have not been clarified. In the present study, CDDO-Me ameliorated monocyte infiltration without vasogenic edema formation in the frontoparietal cortex (FPC) following SE, accompanied by abrogating monocyte chemotactic protein-1 (MCP-1)/tumor necrosis factor-α (TNF-α) expressions and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. Furthermore, CDDO-Me inhibited nuclear factor-κB (NFκB)-S276 phosphorylation and microglial transformation, independent of Nrf2 expression. Similar to CDDO-Me, SN50 (an NFκB inhibitor) mitigated monocyte infiltration by reducing MCP-1 and p38 MAPK phosphorylation in the FPC following SE. Therefore, these findings suggest, for the first time, that CDDO-Me may attenuate microglia/monocyte-mediated neuroinflammation via modulating NFκB- and p38 MAPK-MCP-1 signaling pathways following SE.


2021 ◽  
Vol 22 (15) ◽  
pp. 8223
Author(s):  
Violetta Krajka-Kuźniak ◽  
Wanda Baer-Dubowska

Nrf2 (nuclear factor erythroid 2-related factor 2) and NF-κB (nuclear factor–kappa B) signaling pathways play a central role in suppressing or inducing inflammation and angiogenesis processes. Therefore, they are involved in many steps of carcinogenesis through cooperation with multiple signaling molecules and pathways. Targeting both transcription factors simultaneously may be considered an equally important strategy for cancer chemoprevention and therapy. Several hundreds of phytochemicals, mainly edible plant and vegetable components, were shown to activate Nrf2 and mediate antioxidant response. A similar number of phytochemicals was revealed to affect NF-κB. While activation of Nrf2 and inhibition of NF-κB may protect normal cells against cancer initiation and promotion, enhanced expression and activation in cancer cells may lead to resistance to conventional chemo- or radiotherapy. Most phytochemicals, through different mechanisms, activate Nrf2, but others, such as luteolin, can act as inhibitors of both Nrf2 and NF-κB. Despite many experimental data confirming the above mechanisms currently, limited evidence exists demonstrating such activity in humans. Combinations of phytochemicals resembling that in a natural food matrix but allowing higher concentrations may improve their modulating effect on Nrf2 and NF-κB and ultimately cancer prevention and therapy. This review presents the current knowledge on the effect of selected phytochemicals and their combinations on Nrf2 and NF-κB activities in the above context.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3174
Author(s):  
Nhung Quynh Do ◽  
Shengdao Zheng ◽  
Bom Park ◽  
Quynh T. N. Nguyen ◽  
Bo-Ram Choi ◽  
...  

Myrciaria dubia (HBK) McVaugh (camu-camu) belongs to the family Myrtaceae. Although camu-camu has received a great deal of attention for its potential pharmacological activities, there is little information on the anti-oxidative stress and anti-inflammatory effects of camu-camu fruit in skin diseases. In the present study, we investigated the preventative effect of 70% ethanol camu-camu fruit extract against high glucose-induced human keratinocytes. High glucose-induced overproduction of reactive oxygen species (ROS) was inhibited by camu-camu fruit treatment. In response to ROS reduction, camu-camu fruit modulated the mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NFAT) signaling pathways related to inflammation by downregulating the expression of proinflammatory cytokines and chemokines. Furthermore, camu-camu fruit treatment activated the expression of nuclear factor E2-related factor 2 (Nrf2) and subsequently increased the NAD(P)H:quinone oxidoreductase1 (NQO1) expression to protect keratinocytes against high-glucose-induced oxidative stress. These results indicate that camu-camu fruit is a promising material for preventing oxidative stress and skin inflammation induced by high glucose level.


2019 ◽  
Vol 8 (6) ◽  
pp. 890 ◽  
Author(s):  
Andrés Felipe Díaz ◽  
Sara Polo ◽  
Núria Gallardo ◽  
Sergi Leánez ◽  
Olga Pol

Nerve injury provokes microglial activation, contributing to the sensory and emotional disorders associated with neuropathic pain that do not completely resolve with treatment. In C57BL/6J mice with neuropathic pain induced by chronic constriction of the sciatic nerve (CCI), we evaluated the effects of oltipraz, an antioxidant and anticancer compound, on (1) allodynia and hyperalgesia, (2) microglial activation and pain signaling pathways, (3) oxidative stress, and (4) depressive-like behaviors. Twenty-eight days after surgery, we assessed the effects of oltipraz on the expression of CD11b/c (a microglial marker), phosphoinositide 3-kinase (PI3K)/ phosphorylated protein kinase B (p-Akt), nuclear factor-κB (NF-κB) transcription factor, and mitogen activated protein kinases (MAPK) in the spinal cord, hippocampus, and prefrontal cortex. Our results show that oltipraz alleviates neuropathic pain by inhibiting microglial activation and PI3K/p-Akt, phosphorylated inhibitor of κBα (p-IκBα), and MAPK overexpression, and by normalizing and/or enhancing the expression of antioxidant proteins, nuclear factor erythroid derived-2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and NAD(P)H:quinone oxidoreductase-1 (NQO1) in the spinal cord. The inhibition of microglial activation and induction of the Nrf2/HO-1/NQO1 signaling pathway in the hippocampus and/or prefrontal cortex may explain the antidepressant effects of oltipraz during neuropathic pain. These data demonstrate the analgesic and antidepressant effects of oltipraz and reveal its protective and antioxidant properties during chronic pain.


BMC Cancer ◽  
2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Yota Kawasaki ◽  
Sumiya Ishigami ◽  
Takaaki Arigami ◽  
Yoshikazu Uenosono ◽  
Shigehiro Yanagita ◽  
...  

2016 ◽  
Vol 68 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Anna Wajda ◽  
Joanna Łapczuk ◽  
Marta Grabowska ◽  
Marcin Słojewski ◽  
Maria Laszczyńska ◽  
...  

2018 ◽  
Vol 17 (6) ◽  
pp. 439-447 ◽  
Author(s):  
Burak Yulug ◽  
Ertugrul Kilic ◽  
Serdar Altunay ◽  
Cenk Ersavas ◽  
Cemal Orhan ◽  
...  

Background: Cinnamon polyphenol extract is a traditional spice commonly used in different areas of the world for the treatment of different disease conditions which are associated with inflammation and oxidative stress. Despite many preclinical studies showing the anti-oxidative and antiinflammatory effects of cinnamon, the underlying mechanisms in signaling pathways via which cinnamon protects the brain after brain trauma remained largely unknown. However, there is still no preclinical study delineating the possible molecular mechanism of neuroprotective effects cinnamon polyphenol extract in Traumatic Brain Injury (TBI). The primary aim of the current study was to test the hypothesis that cinnamon polyphenol extract administration would improve the histopathological outcomes and exert neuroprotective activity through its antioxidative and anti-inflammatory properties following TBI. Methods: To investigate the effects of cinnamon, we induced brain injury using a cold trauma model in male mice that were treated with cinnamon polyphenol extract (10 mg/kg) or vehicle via intraperitoneal administration just after TBI. Mice were divided into two groups: TBI+vehicle group and TBI+ cinnamon polyphenol extract group. Brain samples were collected 24 h later for analysis. Results: We have shown that cinnamon polyphenol extract effectively reduced infarct and edema formation which were associated with significant alterations in inflammatory and oxidative parameters, including nuclear factor-κB, interleukin 1-beta, interleukin 6, nuclear factor erythroid 2-related factor 2, glial fibrillary acidic protein, neural cell adhesion molecule, malondialdehyde, superoxide dismutase, catalase and glutathione peroxidase. Conclusion: Our results identify an important neuroprotective role of cinnamon polyphenol extract in TBI which is mediated by its capability to suppress the inflammation and oxidative injury. Further, specially designed experimental studies to understand the molecular cross-talk between signaling pathways would provide valuable evidence for the therapeutic role of cinnamon in TBI and other TBI related conditions.


Sign in / Sign up

Export Citation Format

Share Document