scholarly journals A Protection Scheme for a Power System with Solar Energy Penetration

2020 ◽  
Vol 10 (4) ◽  
pp. 1516 ◽  
Author(s):  
Sheesh Ram Ola ◽  
Amit Saraswat ◽  
Sunil Kumar Goyal ◽  
S. K. Jhajharia ◽  
Baseem Khan ◽  
...  

As renewable energy (RE) penetration has a continuously increasing trend, the protection of RE integrated power systems is a critical issue. Recently, power networks developed for grid integration of solar energy (SE) have been designed with the help of multi-tapped lines to integrate small- and medium-sized SE plants and simultaneously supplying power to the loads. These tapped lines create protection challenges. This paper introduces an algorithm for the recognition of faults in the grid to which a solar photovoltaic (PV) system is integrated. A fault index (FI) was introduced to identify faults. This FI was calculated by multiplying the Wigner distribution (WD) index and Alienation (ALN) index. The WD-index was based on the energy density of the current signal evaluated using Wigner distribution function. The ALN-index was evaluated using sample-based alienation coefficients of the current signal. The performance of the algorithm was validated for various scenarios with different fault types at various locations, different fault incident angles, fault impedances, sampling frequencies, hybrid line consisting of overhead (OH) line and underground (UG) cable sections, different types of transformer windings and the presence of noise. Two phase faults with and without the involvement of ground were differentiated using the ground fault index based on the zero sequence current. This study was performed on the IEEE-13 nodes test network to which a solar PV plant with a capacity of 1 MW was integrated. The performance of the algorithm was also tested on the western part of utility grid in the Rajasthan State in India where solar PV energy integration is high. The performance of the algorithm was effectively established by comparing it with the discrete Wavelet transform (DWT), Wavelet packet transform (WPT) and Stockwell transform-based methods.

2021 ◽  
Author(s):  
ADDISU WORKU BEZABIH

Abstract Although solar energy is abundant, accessible, affordable, and ecologically and environmentally friendly, in rural Ethiopia, the majority of Households are still using pollutant kerosene for lighting. The researcher assess factors that influence dissemination activities, like solar PV installation practices, house and institutional system distribution strategies, system failures, and their causes. Additionally, The researcher analyzed the impact of PV orientation, comparing the simulation results currently performed by the PVsyst software with different angles observed during the sphere survey. This made it possible to influence the dissemination activity factors and, therefore, the best orientation. The study also assessed how access to alter, maintenance, lack of public awareness building, institutional problems, tariffs, and lack of a market could affect PV system access and large-scale distribution. To distribute a sufficient amount of solar PV across the country, this study recommends that consideration of distribution impact factors be considered in the most negligible levels to realize maximum results. The PV system could be a tilt at angles of 160 and 00 azimuths; supported by this method, the PV system can collect a mean of 5.36 kW/m2daily, which implies 1929.6 kW/m2/year. This was the vision that the researcher wish to possess a sustainable supply of energy within the country and reduce emissions from biomass.Thus, adapting standard design practices of mathematical formulas, experimental and PVsyst methods through numerical simulation is critical to identifying ways to enhance the efficiency and reliability of stand-alone PV power systems for further practicality within the region.


A reliable grid connected Photovoltaic (PV) system require effective control schemes for efficient use of solar energy. This paper presents a three-phase grid tied PV system with decoupled real and reactive power control to achieve desired power factor with Maximum Power Point Tracking (MPPT) controller to get maximum solar energy. The synchronous reference frame (dq) control along with decoupling concept is used to control the DC-AC inverter output, while the Phase Locked Loop (PLL) synchronization technique is used to monitor and synchronize the voltage and current at the grid side. The DC-DC converter with Incremental Conductance (InC) based MPPT model is also designed in this paper due to better accuracy compared to Perturb & Observe (P&O) algorithm. The simulation is performed in MATLAB/SIMULINK and a 31.5 kW PV system is modelled to get 30 kW power with the help of MPPT at Standard Test Conditions (STC). Any power factor value between 0.85 lagging to 0.9 leading can be obtained by changingreference q current in this inverter control strategy. The simulation results show that the change of reactive powerdoes not affecttheactive power values of the system, which verifies the effectiveness of the decoupled control strategy of the inverter.


2018 ◽  
Vol 7 (3) ◽  
pp. 450-457
Author(s):  
T. M. N. T. Mansur ◽  
N. H. Baharudin ◽  
R. Ali

Malaysia has moved forward by promoting the use of renewable energy such as solar PV to the public to reduce dependency on fossil fuel-based energy resources. Due to the concern on high electricity bill, Universiti Malaysia Perlis (UniMAP) is keen to install solar PV system as an initiative for energy saving program to its buildings. The objective of this paper is to technically and economically evaluate the different sizing of solar PV system for university buildings under the Net Energy Metering (NEM) scheme. The study involves gathering of solar energy resource information, daily load profile of the buildings, sizing PV array together with grid-connected inverters and the simulation of the designed system using PVsyst software. Based on the results obtained, the amount of solar energy generated and used by the load per year is between 5.10% and 20.20% from the total annual load demand. Almost all solar energy generated from the system will be self-consumed by the loads. In terms of profit gained, the university could reduce its electricity bill approximately between a quarter to one million ringgit per annum depending on the sizing capacity. Beneficially, the university could contribute to the environmental conservation by avoiding up to 2,000 tons of CO2 emission per year.


Author(s):  
Oladokun Sulaiman Olanrewaju

Like all modes of transportation that use fossil fuels, ships produce carbon dioxide emissions that significantly contribute to global climate change and ocean acidification. Additionally, ships release other pollutants that also contribute to the problem and exacerbate climate change. Considering the large volume of ships on the high seas, ship emissions pose a significant threat to human health. The ocean is exposed to vast amounts of sunrays and has a great potential to be explored by the maritime sector and green power industry. Solar energy hybrid assisted power to support auxiliary power for the instruments on board the vessel is explored in a UMT vessel. The vessel that is used in this case study is Discovery XI, which is a 16.50 meter diving boat owned by University Malaysia Terengganu. The study explores the feasibility of using solar energy as a supporting power for marine vessel auxiliaries. The reduction of fuel usage after installing the solar PV system on the boat is determined, as well as an economic analysis. The power requirement for the vessel’s electrical system is estimated. The fuel and money saved is also estimated for comparison purposes of the vessel using the solar PV system and the vessel without the PV system. Economic analyses are performed, the Annual Average Cost (AAC) between a vessel using solar PV system and a vessel without solar PV system is estimated, and the period of the return of investment for the vessel with solar PV system is also estimated. The use of a photovoltaic solar system to assist the boat power requirement will benefit the environment through Green House Gas (GHG) reduction, and the use of solar as a supporting alternative energy could cut the cost of boat operation through fuel savings.


2014 ◽  
Vol 3 (2) ◽  
pp. 467-473
Author(s):  
Henrik Zsiborács ◽  
Gábor Pintér ◽  
Béla Pályi

The energy is one of the most important needs of the humanity. One of its biggest challenge or danger is that the world's demand for energy continues to grow. The aim of present study is to review the introduction of solar energy utilization, the economic determination of the return of crystalline solar photovoltaic systems in Hungary, the electricity price reductions for individuals and the change in the payback period. The effect of the changing investment cost to the payback period based on the changes in electricity price reductions and in central bank interest rate is written in this study. An important question is for a household: decide by or against a solar (PV) system. The main direction of our recent research is the utilization of photovoltaic (PV) solar energy with crystalline solar systems. The research was carried out in solar-electric power plants extended from 1.5 kWp to 10 kWp. The calculation of payback time was performed by dynamic indices.


Author(s):  
Ramzi Alahmadi ◽  
◽  
Kamel Almutairi ◽  

With the increasing global concerns about greenhouse gas emissions caused by the extensive use of fossil fuels, many countries are investing in the deployment of clean energy sources. The utilization of abundant solar energy is one of the fastest growing deployed renewable sources due its technological maturity and economic competitivity. In addition to report from the National Renewable Energy Laboratory (NREL), many studies have suggested that the maturity of solar energy systems will continue to develop, which will increase their economic viability. The focus of analysis in this paper is countries with hot desert climates since they are the best candidates for solar energy systems. The capital of Saudi Arabia, Riyadh is used as the case study due to the country’s ambitious goals in this field. The main purpose of this study is to comprehensively analyze the stochastic behavior and probabilistic distribution of solar irradiance in order to accurately estimate the expected power output of solar systems. A solar Photovoltaic (PV) module is used for the analysis due to its practicality and widespread use in utility-scale projects. In addition to the use of a break-even analysis to estimate the economic viability of solar PV systems in hot desert climates, this paper estimates the indifference point at which the economic feasibility of solar PV systems is justified, compared with the fossil-based systems. The numerical results show that the break-even point of installing one KW generation capacity of a solar PV system is estimated to pay off after producing 16,827 KWh, compared to 15,422 KWh for the case of fossil-based systems. However, the increased cost of initial investment in solar PV systems deployment starts to be economically justified after producing 41,437 KWh.


2021 ◽  
Vol 304 ◽  
pp. 01010
Author(s):  
Adel Aljwary ◽  
Ziyodulla Yusupov ◽  
Olimjon Toirov ◽  
Rustam Shokirov

Photovoltaic (PV) system as one part of distributed energy resources is becoming an alternative for low and medium distribution network of microgrid. By the reason of a wide implementation of power electronic and non-linear loads, harmonics distortion is one of the main problems for the power systems. There are several filter types to mitigate the harmonics. The passive filter is distinguished by its simplicity and economical options from another filters. In this paper, the passive single tuned filter (STF) is used to minimize harmonics distortion in standalone PV based microgrid. A solar PV array is modelled as an ideal single diode model (ISDM) and used to supply electrical power to an AC load. The simulation results are executed on MATLAB/Simulink show that STF is effective in mitigating the voltage total harmonic distortion (VTHD) and the current total harmonic distortion (ITHD) with enhancing the output power quality.


Author(s):  
Amanda Halim ◽  
Ahmad Fudholi ◽  
Stephen Phillips ◽  
Kamaruzzaman Sopian

<p>At present, solar energy is perceived to be one of the world’s contributive energy sources. Holding characteristics such as inexhaustible and non-polluting, making it as the most prominent among renewable energy (RE) sources. The application of the solar energy has been well-developed and used for electricity generation through Photovoltaic (PV) as the harvesting medium. PV cells convert heat from the sun directly into the electricity to power up the electric loads. Solar PV system is commonly built in a rural area where it cannot be powered up by the utility grid due to location constrains. In order to avoid the electricity fluctuation because of unsteady amount of solar radiation, PV solar hybrid is the efficient solution for rural electrifications. This paper presents a review on optimised Hybrid Solar-PV Diesel system configurations installed and used to power up off grid settlements at various locations worldwide.</p>


2020 ◽  
Vol 6 (12) ◽  
pp. 5-12
Author(s):  
Usha Verma ◽  
N K Singh

Worldwide renewable energy resources, especially solar energy, are growing dramatically in view of energy shortage and environmental concerns. Large-scale solar photovoltaic (PV) systems are typically connected to medium voltage distribution grids, where power converters are required to convert solar energy into electricity in such a grid-interactive PV system. This study are designing of solar energy system in MATLABSIMULINK environment which can be integrated with the grid for its efficient operation. The grid integration is necessary to ace the system reliable under various environmental conditions. Enhancing the DC input voltage to the inverter so that in its aspect the AC output from the inverter is also enhanced. And designing of a universal bridge inverter and AI based intelligent control for it such that it enhances the power output from the solar PV system. Designing of efficient rules for the inverter control using FUZZY algorithm. This work proposes an optimized active power enhancement method and evaluates the effect of fuzzy based controller for power enhancement on system reliability and power quality in the grid-interactive PV system with cascaded converter modules. Fuzzy set of rules are defined in a manner such that it is proved to be effective in enhancing the current output keeping the grid voltage same and hence the power output from the systems of cascaded PV modules. it can be concluded that if designing a cascaded PV solar system it is possible to increase the active power output from the inverter just by using fuzzy set of rules for firing pulses in the inverter.


Author(s):  
Carlo Makdisie ◽  
Badia Haidar ◽  
Hassan Haes Alhelou

Smart grid technology is the key for a reliable and efficient use of distributed energy resources. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. In this chapter, the authors present smart grid infrastructure issues and integrating solar PV-sourced electricity in the smart grid. Smart grid has many features, including reliability, flexibility on network topology, efficiency, sustainability, and market-enabling. The authors select a photovoltaic active power line conditioner as a case study. This line conditioner is a device designed to extract the maximum power of a photovoltaic (PV) system and to compensate the nonlinear and unbalanced loads of the electrical power systems. The performance of the PV conditioner with the neuro-fuzzy control designed has been analyzed through a simulation platform.


Sign in / Sign up

Export Citation Format

Share Document