scholarly journals Effect of Alkali Concentration on the Activation of Carbonate-High Illite Clay

2020 ◽  
Vol 10 (7) ◽  
pp. 2203 ◽  
Author(s):  
Angela D’Elia ◽  
Daniela Pinto ◽  
Giacomo Eramo ◽  
Rocco Laviano ◽  
Angel Palomo ◽  
...  

The present study explores the effect of activating solution concentration (4, 6 and 8 M NaOH) on mechanically and thermally pre-treated carbonate-high illite clay (LCR). Pastes were prepared with an alkaline solution/clay (S/B) ratio of 0.55, which were cured at room temperature and relative humidity > 90% in a climatic chamber. At two and 28 days, compressive mechanical strength was determined, and the reaction products were characterised by X-ray Powder Diffraction analysis (XRPD), Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy - Energy Dispersive X-ray spectroscopy (SEM/EDX). Results obtained showed that the presence of reactive calcium in the starting clay induces co-precipitation of a mix of gels: An aluminium-enriched C-S-H gel (C-A-S-H) and a N-A-S-H gel, in which sodium is partially replaced by calcium (N,C)-A-S-H. Pastes prepared with higher (6 or 8 M) activator concentrations exhibit a more compact matrix than the ones prepared with 4 M NaOH. The findings show that the use of a 6 M NaOH solution yields a binder with two days compressive strength >20 MPa and 28 days strength of over 30 MPa.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 602
Author(s):  
Alicja Michalik ◽  
Bogna D. Napruszewska ◽  
Anna Walczyk ◽  
Joanna Kryściak-Czerwenka ◽  
Dorota Duraczyńska ◽  
...  

The study describes the synthesis of Mg-Al hydrotalcite (Ht) with the use of starch as a structure controlling biotemplate. Syntheses were carried out at room temperature, by co-precipitation at pH = 10. The investigated synthesis parameters included the nature of the precipitating agent (NaOH/Na2CO3 or NH3aq/(NH4)2CO3), the nature of starch (potato, corn and cassava), the method of starch addition to reagents, the method of drying and the effect of washing. The materials were examined with X-ray diffraction, scanning electron microscopy/energy dispersive X-ray spectroscopy and infrared spectroscopy. The data show that synthesis of Ht materials in the presence of starch, with use of the ammonia-based precipitant, enabled preparation of nanocrystalline Ht with very fine (<50 nm) particle size. All investigated starches had a similar effect on the crystallinity and the grain size of Ht precipitates. Ht with the smallest nanocrystals was obtained when starch was present in all solutions used for synthesis, and the final product subjected to freeze drying. Washing with water was found to enhance recrystallization and exchange of nitrates for carbonates. Infrared spectra showed that an interaction exists between the biopolymer template and the Ht particles, resulting in a higher degree of order within the Ht-adhering starch component.


2008 ◽  
Vol 587-588 ◽  
pp. 921-925 ◽  
Author(s):  
Sofia F. Marques ◽  
Raquel A. Silva ◽  
Jose Brito Correia ◽  
Nobumitsu Shohoji ◽  
Carmen M. Rangel

FeTi intermetallic powders are very promising media for reversible hydrogen storage. However, difficult activation treatments including annealing at elevated temperatures in high pressure H2 gas atmosphere are mandatory. In the present work nanostructured FeTi powders were produced and activated in situ at room temperature using mechanical alloying/milling (MA/MM) of pure metallic constituents, Fe and Ti, added with sodium borohydride. The resultant powders, FeTiHx, already H2 pre-charged, absorbed a significant amount of H2 but require optimization for reversible absorption/desorption. This system has one of the highest volumetric storage capacities and can be produced at low cost. Several parameters of the as-milled powders were controlled. The phase constitution of the reaction products was characterized by X-ray diffraction and scanning electron microscopy and the absorption isotherms of the activated powders were determined.


2016 ◽  
Vol 1813 ◽  
Author(s):  
M. Rendón Belmonte ◽  
A. Palomo Sánchez ◽  
A. Fernández Jiménez ◽  
A. Torres Acosta ◽  
M. Martínez Madrid ◽  
...  

ABSTRACTThis paper focus on evaluating the ability to use Mexican fly ash (FA) and copper slag (CS) to produce alkali cements (0% OPC) or hybrid cements (20% OPC + 80% fly ash). The alkali activators used were two: 8 M NaOH solution for alkali cements and NaCl with sodium silicate for hybrid cement (HYC). Results of mechanical testing and characterization of the reaction products formed after 2 and 28 days are presented and discussed. Mechanical strength in some cases exceeded 20 MPa, at 2 days curing. The chemical characterization techniques used were X-Ray Diffraction (XRD) and scanning electron microscopy (SEM).


2014 ◽  
Vol 798-799 ◽  
pp. 79-84
Author(s):  
Carlos Eduardo Pereira ◽  
José Jailson Nicácio Alves ◽  
Romualdo Rodrigues Menezes ◽  
José Otávio Peroba Nascimento Santos ◽  
Bianca Viana de Sousa

This work had the aim to optimize the synthesis process of a geopolymer using experimental planning of mixtures. The geopolymer was prepared with different proportions of bauxite mud (R), rice husk ash (C) and metakaolin (M). The aluminosilicatealkaline activation was made with sodium hydroxide (NaOH) solution of 12 mol/L. Afterwards, the obtained material was submitted through a thermal treatment for 6 hours in an oven followed by a cure time of 28 days at room temperature. The final material was characterized through combinations of different techniques such as Scanning Electron Microscopy (SEM) and X-Ray Diffraction. Through carefully analysis of the flexural strength results, it was possible to conclude that the geopolymeric material (R6C2M) had a greater resistance in the seventh cure day at 0.6 MPa, however, it also can be said that the other samples presented an increase in the resistance over the 28 days of cure time.


2020 ◽  
Vol 11 (1) ◽  
pp. 7785-7793

The formation of Zinc Nickel Ferrites Systems Nanocomposites (ZNFONCs) through Ethylene glycol (PEG) surfactant was achieved by chemical co-precipitation technique. Their structure, shape, and constituents were investigated by X-ray diffraction, dispersion, and scanning electron microscopy. The photocatalyst effect of Zinc-Nickel ferrite system Nanocomposites was determined by methyl Blue (MB), when exposed to ultraviolet light. Magnetization estimation by vibrating magnetometer at room temperature is an additional effort in the present work.


2011 ◽  
Vol 415-417 ◽  
pp. 642-647
Author(s):  
En Zhong Li ◽  
Da Xiang Yang ◽  
Wei Ling Guo ◽  
Hai Dou Wang ◽  
Bin Shi Xu

Ultrafine fibers were electrospun from polyacrylonitrile (PAN)/N,N-dimethyl formamide (DMF) solution as a precursor of carbon nanofibers. The effects of solution concentration, applied voltage and flow rate on preparation and morphologies of electrospun PAN fibers were investigated. Morphologies of the green fibers, stabilized fibers and carbonized fibers were compared by scanning electron microscope (SEM). The diameter of PAN nanofibers is about 450nm and the distribution of diameter is well-proportioned. Characterization of the elements changes of fibers were performed by X-ray photoelectron spectroscopy (XPS).


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2003 ◽  
Vol 18 (9) ◽  
pp. 2050-2054 ◽  
Author(s):  
Marcello Gombos ◽  
Vicente Gomis ◽  
Anna Esther Carrillo ◽  
Antonio Vecchione ◽  
Sandro Pace ◽  
...  

In this work, we report on the observation of Nd1Ba6Cu3O10,5 (Nd163) phase of the NdBaCuO system in melt-textured Nd123 bulk samples grown from a mixture of Nd123 and Nd210 phase powders. The observation was performed with polarized light optical microscopy and scanning electron microscopy–energy dispersive x-ray analyses. Images of the identified phase crystals show an aspect quite different from Nd422 crystals. Unexpectedly, Nd163 was individuated, even in “pure” Nd123 samples. Moreover, after long exposure to air, Nd163 disappeared completely in samples synthesized from powders containing Nd210. Thermogravimetry analyses of powders show that the stability of this phase in air is limited to temperatures higher than 900 °C, so Nd163 is unstable and highly reactive at room temperature. Moreover, an explanation of the observation of Nd163 in Nd210 free samples, based on the spontaneous formation of Nd163 phase in a Nd123 melt, is proposed.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2014 ◽  
Vol 979 ◽  
pp. 184-187
Author(s):  
Weerachon Phoohinkong ◽  
Thitinat Sukonket ◽  
Udomsak Kitthawee

Zinc sulfide (ZnS) nanostructures are important materials for many technologies such as sensors, infrared windows, transistors, LED displays, and solar cells. However, many methods of synthesizing ZnS nanostructures are complex and require expensive equipment. In this study, a liquid-solid chemical reaction without surfactant was used to synthesize ZnS at room temperature. In addition, commercial grade zinc oxide (ZnO) particles were used as a precursor. The effect of the addition of acids and inorganic salts were investigated. The products were characterized by field emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results show that the nanoparticles of ZnS were obtained in hydrochloric acid and acetic acid addition. The diameters were in the range of 10 to 20 nm and 50 to 100 nm, respectively. In the case of a sodium chloride salt addition, a ZnS structure was obtained with a particle size of approximately 5 nm and a flake-like morphology.


Sign in / Sign up

Export Citation Format

Share Document