scholarly journals Mechanical Performance Characterization of Lignin-Modified Asphalt Mixture

2020 ◽  
Vol 10 (9) ◽  
pp. 3324
Author(s):  
Yi Zhang ◽  
Xuancang Wang ◽  
Guanyu Ji ◽  
Zhenyang Fan ◽  
Yuchen Guo ◽  
...  

Lignin, as a bio-based waste, has been utilized in the asphalt industry due to various advantages. This study aimed to investigate the effects of two lignin products (lignin powder and lignin fiber) on the mechanical properties of asphalt mixtures. The raveling, rutting, thermal and fatigue cracking resistance, and moisture susceptibility of different asphalt mixtures were respectively evaluated by the Cantabro test, wheel loading tracking test, semicircular bending test, four-point beam bending test, and freezing-thaw cyclic test. Results show that asphalt mixture with lignin powder-modified asphalt improved the overall mechanical performance. However, lignin fiber showed contradictory effects on certain mechanical properties, i.e., improved rutting resistance and thermal cracking resistance of asphalt mixture, degraded abrasion resistance, fatigue performance, and moisture stability. Therefore, cautions need to be taken when incorporating lignin fiber into asphalt mixture.

Asphalt pavement is typically susceptible to moisture damage. However, it could be improved with the incorporation of additives or modifiers through binder modifications. The objective of the study is to assess the effect of adhesion promoters, namely PBL and M5000, onto the Hot Mix Asphalt (HMA). The performance of asphalt mixture has been assessed in terms of the service characteristics, the bonding properties, and mechanical performances. The service characteristics were assessed through the Workability Index (WI) and Compaction Energy Index (CEI) to evaluate the ease of asphalt mixture during the mixing and compaction stage. The bonding properties of the modified asphalt mixtures were determined using the boiling water test and static water immersion test to signify the degree of coating after undergoing specific conditioning period and temperature. The mechanical performances of the modified asphalt mixture were evaluated via Marshall stability, semi-circular bending, and modified Lottman tests. All specimens were prepared by incorporating adhesion promoters at the dosage rates of 0.5% and 1.0% by weight of asphalt binder. From the investigation, the bonding properties significantly improved for the modified asphalt mixture compared to the control mixture. The WI of the modified asphalt mixture increased while the CEI decreased in comparison to the control specimen. This implies the workability of modified asphalt mixture is better and requires less energy to be compacted. Modified asphalt mixture generally had better mechanical performance. Therefore, it can be deduced that the asphalt mixture with adhesion promoters have better overall performance than the control mixture.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Hui Yao ◽  
Zhanping You

The objectives of this research are to use micro- and nanomaterials to modify the asphalt mixture and to evaluate the mechanical performance of asphalt mixtures. These micro- and nanomaterials, including carbon microfiber, Nanomer material, nanosilica, nonmodified nanoclay, and polymer modified nanoclay, were selected to blend with the control asphalt to improve the overall performance of the modified asphalt binders and mixtures. The microstructures of original materials and asphalt binders were observed by the field emission scanning electron microscope (FE-SEM). The mixture performance tests were employed to evaluate the resistance to rutting and permanent deformation of the modified asphalt mixtures. Test results indicate that(1)the dynamic modulus of micro- and nanomodified asphalt mixtures improved significantly;(2)the rutting susceptibility of the modified asphalt mixtures was reduced significantly compared to that of the control asphalt mixture;(3)the microstructures of modified asphalt binders were different from the control asphalt, and the structures determine the improvement in the performance of modified asphalt mixtures. These results indicate that the addition of micro- and nanomaterials enhanced the rutting performance and strength of asphalt mixtures. In addition, the analysis of variance (ANOVA) was used to analyze the modifying effects of micro- and nanomaterials on the performance.


2012 ◽  
Vol 204-208 ◽  
pp. 4143-4146
Author(s):  
Zhong Guo He ◽  
Xin De Tang ◽  
Wen Jun Yin ◽  
Yi Fan Sun ◽  
Zhong Bo Liu

Montmorillonite/SBS composite modifed asphalts were prepared by mixing montmorillonite with SBS-modified asphalt, further the corresponding asphalt mixtures were obtained. The paving technical indexes of the mixture such as physical properties, moisture suscepyibility, and high temperature stability were tested, and compared with that of the corresponding SBS-modifed asphalt mixture and base asphalt mixture. The results demonstrate that the montmorillonite/SBS composite modifed asphalt mixture exhibites enhanced stability, improved flow value and moisture susceptibility, and increased high temperature stability.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Mojtaba Mohammadafzali ◽  
Hesham Ali ◽  
James A. Musselman ◽  
Gregory A. Sholar ◽  
Aidin Massahi

Fatigue cracking is an important concern when a high percentage of Reclaimed Asphalt Pavement (RAP) is used in an asphalt mixture. The aging of the asphalt binder reduces its ductility and makes the pavement more susceptible to cracking. Rejuvenators are often added to high-RAP mixtures to enhance their performance. The aging of a rejuvenated binder is different from virgin asphalt. Therefore, the effect of aging on a recycled asphalt mixture can be different from its effect on a new one. This study evaluated the cracking resistance of 100% recycled asphalt binders and mixtures and investigated the effect of aging on this performance parameter. The cracking resistance of the binder samples was tested by a Bending Beam Rheometer. An accelerated pavement weathering system was used to age the asphalt mixtures and their cracking resistance was evaluated by the Texas Overlay Test. The results from binder and mixture tests mutually indicated that rejuvenated asphalt has a significantly better cracking resistance than virgin asphalt. Rejuvenated mixtures generally aged more rapidly, and the rate of aging was different for different rejuvenators.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Mohd Rosli Mohd Hasan ◽  
Zhanping You ◽  
Mohd Khairul Idham Mohd Satar ◽  
Muhammad Naqiuddin Mohd Warid ◽  
Nurul Hidayah Mohd Kamaruddin ◽  
...  

This study was conducted to assess the performance of modified asphalt binders and engineering properties of mixtures prepared with incorporation 3 vol% and 6 vol% of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE), and combinations of CaCO3 and LLDPE. The rheological properties of control and modified asphalt binders were evaluated using a series of testing such as rotational viscometer (RV), multiple stress creep recovery (MSCR) and bending beam rheometer (BBR) tests. Meanwhile, four-point beam fatigue test, the dynamic modulus (E*) test and tensile strength ratio (TSR) test were conducted to assess the engineering properties of asphalt mixtures. Based on the findings, the RV and MSCR test result shows that all modified asphalt binders have improved performance in comparison to the neat asphalt binders in terms of higher viscosity and improved permanent deformation resistance. A higher amount of CaCO3 and LLDPE have led modified asphalt binders to better recovery percentage, except the asphalt binders modified using a combination of CaCO3 and LLDPE. However, the inclusion of LLDPE into asphalt binder has lowered the thermal cracking resistance. The incorporation of CaCO3 in asphalt mixtures was found beneficial, especially in improving the ability to resist fatigue cracking of asphalt mixture. In contrast, asphalt mixtures show better moisture sensitivity through the addition of LLDPE. The addition of LLDPE has significantly enhanced the indirect tensile strength values and tensile strength ratio of asphalt mixtures.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3359
Author(s):  
Bangwei Wu ◽  
Chufan Luo ◽  
Zhaohui Pei ◽  
Ji Xia ◽  
Chuangchuang Chen ◽  
...  

To evaluate the long-term performances of different polymer-modified asphalt mixtures, three modifiers were chosen to modify AC-13 (defined as the asphalt concrete with the aggregate nominal maximum particle size of 13.2 mm); namely, high viscosity modifier (HVM), high modulus modifier (HMM), and anti-rutting agent (ARA). The deformation and cracking resistance of different polymer-modified mixtures were checked at different aging conditions (unaged, short-term aged, and long-term aged for 5, 10, and 15 days respectively). The results of the Hamburg wheel-track test and uniaxial penetration test (UPT) showed that the rutting resistance of all asphalt mixtures changed in a V-shape as the aging progressed. From the unaged stage to the long-term aging stage (5 days), the rutting resistance decreases gradually. While after the long-term aging stage (5 days), the rutting resistance increases gradually. Results from the semicircular bending test (SCB) and the indirect tensile asphalt cracking test (IDEAL-CT) indicated that the cracking resistance of all the mixtures gradually decline with the deepening of the aging degree, indicating that aging weakens the crack resistance of asphalt mixtures. Additionally, test results showed that the rutting resistance of ARA AC-13 (defined as AC-13 containing ARA) is the best, the cracking resistances of ARA AC-13, HMM AC-13 (defined as AC-13 containing HMM) and HVM AC-13 (defined as AC-13 containing HVM) have no significant difference, and different polymer modifiers had different sensitivities to aging due to the polymer content and the type of modifier. The conclusions of this study help to further understand the long-term performance of polymer-modified asphalt mixtures during service life and to help guide the selection of modifiers for mixtures.


2020 ◽  
Vol 6 (2) ◽  
pp. 304-317 ◽  
Author(s):  
Huda Qasim Mawat ◽  
Mohammed Qadir Ismael

Moisture induced damage in asphaltic pavement might be considered as a serious defect that contributed to growth other distresses such as permanent deformation and fatigue cracking. This paper work aimed through an experimental effort to assess the behaviour of asphaltic mixtures that fabricated by incorporating several dosages of carbon fiber in regard to the resistance potential of harmful effect of moisture in pavement. Laboratory tests were performed on specimens containing fiber with different lengths and contents. These tests are: Marshall Test, the indirect tensile test and the index of retained strength. The optimum asphalt contents were determined based on the Marshall method. The preparation of asphaltic mixtures involved three contents of carbon fiber namely (0.10%, 0.20%, and 0.30%) by weight of asphalt mixture and three lengths including (1.0, 2.0 and 3.0) cm. The results of this work lead to several conclusions that mainly refer to the benefits of the contribution of carbon fibers to improving the performance of asphalt mixtures, such as an increase in its stability and a decrease in the flow value as well as an increase in voids in the mixture. The addition of 2.0 cm length carbon fibers with 0.30 percent increased indirect tensile strength ratio by 11.23 percent and the index of retained strength by 12.52 percent. It is also found that 0.30 % by weight of the mixture is the optimum fiber content for the three lengths.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiushan Wang ◽  
Hengyu Zhou ◽  
Xingxing Hu ◽  
Senjie Shen ◽  
Bowen Dong

Ceramic fiber (CF) is a novel thermally resistant material with the potential to improve the high-temperature performance of asphalt mixture. In this study, asphalt mixtures with 0%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% CFs were prepared. The Marshall test, wheel tracking test, Marshall immersion test, freeze-thaw splitting test, and low-temperature bending test were conducted to evaluate the performance of the CF-modified asphalt mixture. The morphologies of these asphalt mixtures were observed using scanning electron microscopy to analyze the modification mechanism. The results showed that the CFs could improve the mechanical properties, high-temperature stability, moisture susceptibility, and low-temperature cracking resistance of asphalt mixture, with the optimum CF content being 0.4%. Further microscopic analysis showed that the CFs improved the performances of asphalt mixture through forming three-dimensional network structure, asphalt absorption, bridging cracks, and pulling-out effect.


2011 ◽  
Vol 688 ◽  
pp. 191-194 ◽  
Author(s):  
Xin De Tang ◽  
Xiang Li Kong ◽  
Fang Huang ◽  
Jun Li

To provide the valuable references for pavement materials applied in various climatic zones, a series of asphalts paving mixtures including common asphalt mixture, SBS modified asphalt mixture and nano-montmorillonite (NMMT)/SBS composite modified asphalt mixture were designed. Marshall tests were carried out to evaluate the effect of different modifiers on the property of these asphalt paving mixtures. Compared with the other two mixtures, NMMT/SBS composite modified asphalt shows fine mechanical performance and moisture susceptibility. These results indicate that NMMT/SBS as a composite modifier can result in excellent properties for asphalt paving mixture.


2019 ◽  
Vol 81 (6) ◽  
Author(s):  
Norfazira Mohd Azahar ◽  
Norhidayah Abdul Hassan ◽  
Ramadhansyah Putra Jaya ◽  
Hasanan Md. Nor ◽  
Mohd Khairul Idham Mohd Satar ◽  
...  

The use of cup lump rubber as an additive in asphalt binder has recently become the main interest of the paving industry. The innovation helps to increase the natural rubber consumption and stabilize the rubber price. This study evaluates the mechanical performance of cup lump rubber modified asphalt (CMA) mixture in terms of resilient modulus, dynamic creep and indirect tensile strength under aging conditions. The CMA mixture was prepared using dense-graded Marshall-designed mix and the observed behavior was compared with that of conventional mixture. From the results, both mixtures passed the volumetric properties as accordance to Malaysian Public Work Department (PWD) specification. The addition of cup lump rubber provides better resistance against permanent deformation through the enhanced properties of resilient modulus and dynamic creep. Furthermore, the resilient modulus of CMA mixture performed better under aging conditions.  


Sign in / Sign up

Export Citation Format

Share Document