scholarly journals Prediction of As, Cd, Cr, Hg, Ni, and Se Concentrations in Organic Amendments Using Portable X-ray Fluorescence and Multivariate Modeling

2020 ◽  
Vol 10 (17) ◽  
pp. 5726
Author(s):  
Rafael López-Núñez ◽  
Fátima Ajmal-Poley ◽  
Pilar Burgos-Doménech

Portable X-ray fluorescence (pXRF) has been a widely used technique in various applications. However, its use for the analysis of organic amendments (composts, sewage sludges, organic fertilizers) is scarce. In these matrices, concentrations of some elements are below their detection limit. The objective of this work was to find multiple linear regression equations that were able to predict the aqua-regia-soluble concentrations of the elements As, Cd, Cr, Hg, Ni, and Se using the pXRF readings of other measurable elements as predictor variables. For this, a set of 30 samples of organic amendments (composts, sewage sludges, and organic fertilizers) from the Manure and Refuse Sample Exchange Programme of the Wageningen Evaluating Programs for Analytical Laboratories (MARSEP-WEPAL) was used. Several amendment type-dependent single or multiple linear functions were found based on 1, 2, or 3 predictors. The predictor readings corresponded to the concentration of elements of geogenic (Fe, Si, Ti, Cl, Zr Al, Ca, S, Mn, and Ba), anthropogenic (Zn and Pb), and agricultural (P and K) origin. The regression coefficients of these functions were r = 0.90–0.99; therefore, they allowed for the quantitative determination of the target elements. These results will allow for fast and reliable analysis of organic amendments using pXRF that is valid for quality control in treatment plants.

Author(s):  
Rafael López-Núñez ◽  
Fátima Ajmal-Poley ◽  
José A. González-Pérez ◽  
Miguel Angel Bello-López ◽  
Pilar Burgos-Doménech

The determination of heavy metals in soils and organic amendments, such as compost, manure, biofertilizer, and sludge, generally involves the digestion of samples with aqua regia, and the determination of those in the solution using various techniques. Portable X-ray fluorescence (PXRF) has many advantages in relation to traditional analytical techniques. However, PXRF determines the total elemental content and, until now, its use for the analysis of organic amendments has been limited. The objective of this work is the calibration of a PXRF instrument to determine the aqua regia-soluble elemental contents directly in solid samples of organic amendments. Our proposal will avoid the digestion step and the use of other laboratory techniques. Using a training set of samples, calibration functions were obtained that allow the determination of the aqua regia-soluble contents from the PXRF readings of total contents. The calibration functions (obtained by multiple linear regression) allowed the quantitative determination of the aqua regia-soluble contents of Fe, K, P, S, Zn, Cu, Pb, Sr, Cr, and Mn, as well as the organic matter content and a semi-quantitative assessment of Al, Ca, V, Ba, Ni, and As contents. The readings of Si, Fe, Al, Ca, K, or S were used as correction factors, indicating that the calibrations functions found are truly based on the chemical composition of the sample matrix. This study will allow a fast, cheap, and reliable field analysis of organic amendments and of other biomass-based materials.


1977 ◽  
Vol 21 ◽  
pp. 75-88
Author(s):  
B. S. King ◽  
L. F. Espos ◽  
B. P. Fabbi

An X-ray fluorescence (XRF) method has been devised for the rapid quantitative determination of 16 minor and trace elements in geological materials. This method, a modification of a direct dilution method (1, 2, 3), uses a sample-to-binder ratio of 85:15 for sample preparation. Pellets prepared by this method are durable and do not deteriorate rapidly when exposed to high X-ray irradiation. Interferences and matrix effects are successfully corrected in actual analyses by employment of multiple linear regression equations.Accuracy and precision have been improved over the method previously used in this laboratory. Detection limits have been lowered for Zn, Rb, Y and Zn approximately by the factor of 2. When interelement corrections are made, the XRF values are found to be in good agreement with the preferred chemical values for the 19 international silicate-rock standards.


Author(s):  
F. A. Bannister

Concentrates from the platiniferous norites of the Bushveld, Transvaal, are not completely soluble in aqua regia. The insoluble portion consists of steel-grey fragments first analysed chemically by R. A. Cooper and considered by him to be a new platinum mineral represented by the formula Pt(As,S)2. The name cooperite was proposed for the new mineral by F. Wartenweiller, and after further work Cooper decided that the arsenic found in the early analysis was due to the presence of sperrylite, and he changed the formula to PtS2. H. Schneiderhöhn observed simple twinning and, less frequently, polysynthetie lamellae on polished sections of mineral grains from the same deposits, and he suggested that cooperite is probably orthorhombic and isomorphous with marcasite. The latest account of the new mineral has been published by H. R. Adam who gave several analyses of cooperite from the Rustenburg and Potgietersrust districts and concluded that the ‘mineral is PtS2 with a small amount of excess metal (platinum, palladium, and nickel) present in solid solution’.


1995 ◽  
Vol 119 (3-4) ◽  
pp. 233-241 ◽  
Author(s):  
Nikolaos S. Thomaidis ◽  
Efrosini A. Piperaki ◽  
Panayotis A. Siskos

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3892
Author(s):  
Michael Horf ◽  
Robin Gebbers ◽  
Sebastian Vogel ◽  
Markus Ostermann ◽  
Max-Frederik Piepel ◽  
...  

Knowing the exact nutrient composition of organic fertilizers is a prerequisite for their appropriate application to improve yield and to avoid environmental pollution by over-fertilization. Traditional standard chemical analysis is cost and time-consuming and thus it is unsuitable for a rapid analysis before manure application. As a possible alternative, a handheld X-ray fluorescence (XRF) spectrometer was tested to enable a fast, simultaneous, and on-site analysis of several elements. A set of 62 liquid pig and cattle manures as well as biogas digestates were collected, intensively homogenized and analysed for the macro plant nutrients phosphorus, potassium, magnesium, calcium, and sulphur as well as the micro nutrients manganese, iron, copper, and zinc using the standard lab procedure. The effect of four different sample preparation steps (original, dried, filtered, and dried filter residues) on XRF measurement accuracy was examined. Therefore, XRF results were correlated with values of the reference analysis. The best R2s for each element ranged from 0.64 to 0.92. Comparing the four preparation steps, XRF results for dried samples showed good correlations (0.64 and 0.86) for all elements. XRF measurements using dried filter residues showed also good correlations with R2s between 0.65 and 0.91 except for P, Mg, and Ca. In contrast, correlation analysis for liquid samples (original and filtered) resulted in lower R2s from 0.02 to 0.68, except for K (0.83 and 0.87, respectively). Based on these results, it can be concluded that handheld XRF is a promising measuring system for element analysis in manures and digestates.


1978 ◽  
Vol 22 ◽  
pp. 411-417
Author(s):  
J. Farus ◽  
J. Kierzek ◽  
T. Zóltowski ◽  
G. Kuc ◽  
W. Ratyński

Using corrections applied to the XRE analysis of copper ore flotation materials, two methods of determining the ratio of solid to liquid content in slurries are described. Both are based on the use of coherently scattered radiation. In the first method the intensity of Cu, Pb and Fe is normalized using a coefficient defined as a ratio of scattered radiation from the sample and pure diluent. In the second, the regression equations are applied. Satisfactory results have been obtained for solid contents ranging from 10 to 40%.


2003 ◽  
Vol 81 (2) ◽  
pp. 193-196 ◽  
Author(s):  
R R Martin ◽  
S J Naftel ◽  
T K Sham ◽  
B Hart ◽  
M A Powell

Samples of sewage sludges proposed for use as soil ameliorants in an Indo-Canadian project were tested for chromium content. Standard aqua regia extractions found one sludge to have excessive amounts of Cr. X-ray absorption near-edge structure (XANES) spectroscopy, however, indicated that the Cr was present in the relatively benign Cr(III) oxidation state in all the sludge samples.Key words: soil, chromium, synchrotron, XANES.


2011 ◽  
Vol 66 (3) ◽  
pp. 289-294 ◽  
Author(s):  
Mike Neumann ◽  
Robert Nöske ◽  
Grete Bach ◽  
Thomas Glaubauf ◽  
Michael Bartoszek ◽  
...  

An efficient, reliable and low-cost procedure to determine the silicon content in plant material is presented which allows to monitor the agricultural aspects like growth and yield. The presented procedure consists of a hydrochloric acid pre-treatment and a subsequent thermal oxidation. The method is compared to other processes like dissolution in hydrofluoric acid combined with ICP OES, energy-dispersive X-ray fluorescence spectroscopy (EDXRF) or aqua regia treatment.


Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Author(s):  
R. J. Narconis ◽  
G. L. Johnson

Analysis of the constituents of renal and biliary calculi may be of help in the management of patients with calculous disease. Several methods of analysis are available for identifying these constituents. Most common are chemical methods, optical crystallography, x-ray diffraction, and infrared spectroscopy. The application of a SEM with x-ray analysis capabilities should be considered as an additional alternative.A scanning electron microscope equipped with an x-ray “mapping” attachment offers an additional dimension in its ability to locate elemental constituents geographically, and thus, provide a clue in determination of possible metabolic etiology in calculus formation. The ability of this method to give an undisturbed view of adjacent layers of elements in their natural state is of advantage in determining the sequence of formation of subsequent layers of chemical constituents.


Sign in / Sign up

Export Citation Format

Share Document