scholarly journals Charging Station Planning for Electric Vehicles

Systems ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Arun Kumar Kalakanti ◽  
Shrisha Rao

Charging station (CS) planning for electric vehicles (EVs) for a region has become an important concern for urban planners and the public alike to improve the adoption of EVs. Two major problems comprising this research area are: (i) the EV charging station placement (EVCSP) problem, and (ii) the CS need estimation problem for a region. In this work, different explainable solutions based on machine learning (ML) and simulation were investigated by incorporating quantitative and qualitative metrics. The solutions were compared with traditional approaches using a real CS area of Austin and a greenfield area of Bengaluru. For EVCSP, a different class of clustering solutions, i.e., mean-based, density-based, spectrum- or eigenvalues-based, and Gaussian distribution were evaluated. Different perspectives, such as the urban planner perspective, i.e., the clustering efficiency, and the EV owner perspective, i.e., an acceptable distance to the nearest CS, were considered. For the CS need estimation, ML solutions based on quadratic regression and simulations were evaluated. Using our CS planning methods urban planners can make better CS placement decisions and can estimate CS needs for the present and the future.

2020 ◽  
Vol 10 (18) ◽  
pp. 6500
Author(s):  
Dian Wang ◽  
Manuela Sechilariu ◽  
Fabrice Locment

The increase in the number of electric vehicles (EVs) has led to an increase in power demand from the public grid; hence, a photovoltaic based charging station for an electric vehicle (EV) can participate to solve some peak power problems. On the other hand, vehicle-to-grid technology is designed and applied to provide ancillary services to the grid during the peak periods, considering the duality of EV battery “load-source”. In this paper, a dynamic searching peak and valley algorithm, based on energy management, is proposed for an EV charging station to mitigate the impact on the public grid, while reducing the energy cost of the public grid. The proposed searching peak and valley algorithm can determine the optimal charging/discharging start time of EV in consideration of the initial state of charge, charging modes, arrival time, departure time, and the peak periods. Simulation results demonstrate the proposed searching peak and valley algorithm’s effectiveness, which can guarantee the balance of the public grid, whilst meanwhile satisfying the charging demand of EV users, and most importantly, reduce the public grid energy cost.


Systems ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Mahdi Boucetta ◽  
Niamat Ullah Ibne Hossain ◽  
Raed Jaradat ◽  
Charles Keating ◽  
Siham Tazzit ◽  
...  

Exponential technological-based growth in industrialization and urbanization, and the ease of mobility that modern motorization offers have significantly transformed social structures and living standards. As a result, electric vehicles (EVs) have gained widespread popularity as a mode of sustainable transport. The increasing demand for of electric vehicles (EVs) has reduced the some of the environmental issues and urban space requirements for parking and road usage. The current body of EV literature is replete with different optimization and empirical approaches pertaining to the design and analysis of the EV ecosystem; however, probing the EV ecosystem from a management perspective has not been analyzed. To address this gap, this paper develops a systems-based framework to offer rigorous design and analysis of the EV ecosystem, with a focus on charging station location problems. The study framework includes: (1) examination of the EV charging station location problem through the lens of a systems perspective; (2) a systems view of EV ecosystem structure; and (3) development of a reference model for EV charging stations by adopting the viable system model. The paper concludes with the methodological implications and utility of the reference model to offer managerial insights for practitioners and stakeholders.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4240 ◽  
Author(s):  
Khairy Sayed ◽  
Ahmed G. Abo-Khalil ◽  
Ali S. Alghamdi

This paper introduces an energy management and control method for DC microgrid supplying electric vehicles (EV) charging station. An Energy Management System (EMS) is developed to manage and control power flow from renewable energy sources to EVs through DC microgrid. An integrated approach for controlling DC microgrid based charging station powered by intermittent renewable energies. A wind turbine (WT) and solar photovoltaic (PV) arrays are integrated into the studied DC microgrid to replace energy from fossil fuel and decrease pollution from carbon emissions. Due to the intermittency of solar and wind generation, the output powers of PV and WT are not guaranteed. For this reason, the capacities of WT, solar PV panels, and the battery system are considered decision parameters to be optimized. The optimized design of the renewable energy system is done to ensure sufficient electricity supply to the EV charging station. Moreover, various renewable energy technologies for supplying EV charging stations to improve their performance are investigated. To evaluate the performance of the used control strategies, simulation is carried out in MATLAB/SIMULINK.


Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1504
Author(s):  
Aitor Fernández-Jiménez ◽  
Daniel Fernández-de la Cruz ◽  
Jesús Ruiz-Torres ◽  
Jose Luis Perrino-Blanco ◽  
Raúl Jimeno-Almeida

The implantation of floating platforms for the generation of electricity from tidal currents is possible due to the development of new hydrokinetic microturbines. This article presents an analysis of the situation in which the exploitation of tidal currents is nowadays, the state of art of the existing technologies and the principal projects that are currently underway. In addition, it focuses on the different aspects and criteria to consider for building one of these plants. Finally, an installation by floating platform is proposed to supply electricity to a charging station for electric vehicles near the Nalon river (Spain) with a description of it and an analysis of feasibility.


2011 ◽  
Vol 347-353 ◽  
pp. 3902-3907
Author(s):  
Liang Liang Chen ◽  
Ming Wu ◽  
Hao Zhang ◽  
Xiao Hua Ding ◽  
Jin Da Zhu

The energy supply infrastructures construction is the prerequisite and basis for the large-scale promotion and application of electric vehicles (EVs). The characteristics and current construction situation of several EV power supply infrastructures in China such as AC charging spot, charging station and battery swap station are introduced first, and the characteristics of time combination mode and space combination mode for the construction of EV charging facilities are also discussed. Meanwhile, the features of operation mode for EV power supply infrastructures in different developing stage of are analyzed, and the main bodies for EV power supply infrastructures construction are also introduced.


Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


Author(s):  
Yang Chen ◽  
Fadwa Dababneh ◽  
Bei Zhang ◽  
Saiid Kassaee ◽  
Brennan T. Smith ◽  
...  

Abstract Due to the promising potential for environmental sustain-ability, there has been a significant increase of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEV) in the market. To support this increasing demand for EVs and PHEVs, challenges related to capacity planning and investment costs of public charging infrastructure must be addressed. Hence, in this paper, a capacity planning problem for EV charging stations is developed and aims to balance current capital investment costs and future operational revenue. The charging station considered in this work is assumed to be equipped with solar photovoltaic panel (PV) and an energy storage system which could be electric battery or the recently invented hydro-pneumatic energy storage (GLIDES, Ground-Level Integrated Diverse Energy Storage) system. A co-optimization model that minimizes investment and operation cost is established to determine the global optimal solution while combining the capacity and operational decision making. The operational decision making considers EV mobility which is modeled as an Erlang-loss system. Meanwhile, stochastic programming is adopted to capture uncertainties from solar radiation and charging demand of the EV fleet. To provide a more general and computationally efficient model, main configuration parameters are sampled in the design space and then fixed in solving the co-optimization model. The model can be used to provide insights for charging station placement in different practical situations. The sampled parameters include: the total number of EV charging slots, the PV area, the maximum capacity of the energy storage system, and daily mean EV arrival number in the Erlang-loss system. Based on the sampled parameter combinations and its responses, black-box mappings are then constructed using surrogate models (RBF, Kriging etc). The effectiveness of proposed surrogate modeling approach is demonstrated in the numerical experiments.


2021 ◽  
Vol 22 (1) ◽  
pp. 78-91
Author(s):  
Faiz Rafiza Ahmadani ◽  
Rafi Aquary

The current surplus of electricity across Indonesia has further underlined many opportunities to optimize the usage of electricity in many sectors; including on the issue of Electric Vehicle (EV) ownership within the country. According to the government’s projection, the state-owned enterprise (SOE) of PLN would construct 254.181 units of charging stations by 2030. However, there exists the problem of ‘chicken and egg’; in which more EV charging stations would be required to spur EV sales and vice versa. In addition to that, the lack of charging stations has also led to the disinterest from the public to purchase EVs due to fear of range anxiety. Hence, this paper is written to address the importance of publicly funded charging stations in Indonesia to help cultivate EV development within the country. Not only that, since Indonesia is the largest member country of ASEAN, it could be the ‘trendsetter’ of this issue in the region and would have the upper hand position as an early adopter. Our hypotheses suggest that not only publicly funded the development of charging stations would be beneficial to the future-buyer of EV, but also for the government itself.     Keywords: Electric Vehicle, Charging Station, Public-Funded, Range Anxiety   


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7144
Author(s):  
Marina Dorokhova ◽  
Jérémie Vianin ◽  
Jean-Marie Alder ◽  
Christophe Ballif ◽  
Nicolas Wyrsch ◽  
...  

Profound changes driven by decarbonization, decentralization, and digitalization are disrupting the energy industry, bringing new challenges to its key stakeholders. In the attempt to address the climate change issue, increasing penetration of renewables and mobility electrification augment the complexity of the electric grid, thus calling for new management approaches to govern energy exchanges while ensuring reliable and secure operations. The emerging blockchain technology is regarded as one of the most promising solutions to respond to the matter in a decentralized, efficient, fast, and secure way. In this work, we propose an Ethereum-based charging management framework for electric vehicles (EVs), tightly interlinked with physical and software infrastructure and implemented in a real-world demonstration site. With a specifically designed solidity-based smart contract governing the charging process, the proposed framework enables secure and reliable accounting of energy exchanges in a network of trustless peers, thus facilitating the EVs’ deployment and encouraging the adoption of blockchain technology for everyday tasks such as EV charging through private and semi-private charging infrastructure. The results of a multi-actor implementation case study in Switzerland demonstrate the feasibility of the proposed blockchain framework and highlight its potential to reduce costs in a typical EV charging business model. Moreover, the study shows that the suggested framework can speed up the charging and billing processes for EV users, simplify the access to energy markets for charging station owners, and facilitate the interaction between the two through specifically designed mobile and web applications. The implementation presented in this paper can be used as a guideline for future blockchain applications for EV charging and other smart grid projects.


Sign in / Sign up

Export Citation Format

Share Document