scholarly journals Design of Experiment in the Milling Process of Aluminum Alloys in the Aerospace Industry

2020 ◽  
Vol 10 (19) ◽  
pp. 6951
Author(s):  
Aurel Mihail Țîțu ◽  
Andrei Victor Sandu ◽  
Alina Bianca Pop ◽  
Ștefan Țîțu ◽  
Dragos Nicolae Frățilă ◽  
...  

For many years, surface has quality received a serious attention due to its influence on various mechanical properties. The main contribution made in this scientific paper is the performance of actual experiments, as well as the experimental processing obtained in order to develop a model for predicting the surface roughness based on the optimization of cutting parameters. The novelty of this paper is brought by the method of obtaining the regression equation of the surface roughness, resulted from a standard end-milling process (standard milling tools, standard milling parameters, recommended by the tool manufacturer, 3 axis CNC machine and standard vice), on aluminum alloy 7136 in temper T76511, through two statistical methods of data analysis. This material is used for the production of extruded parts and is poorly understood for the proposed line of research. This study’s aim is to determine the surface roughness equation obtained by the milling of aluminum alloy 7136 in two ways: using Taguchi′s experimental design once and the other, using the central composite design. The Taguchi method and the central composite design are used to develop an efficient mathematical model to predict the optimal level of certain processing parameters. Using ANOVA analysis, a comparative study of calculated and experimental surface roughness values is carried out. The initial characteristics (surface roughness) and the controlled factors (cutting speed, depth of cut and feed) are analyzed with the Minitab program. Finally, an analysis of the advantages and disadvantages of the two methods used is presented. This study has a great industrial application, since the main task of every manufacturer is to achieve a better quality of the final product with minimal processing time.

Author(s):  
M. Kishanth ◽  
P. Rajkamal ◽  
D. Karthikeyan ◽  
K. Anand

In this paper CNC end milling process have been optimized in cutting force and surface roughness based on the three process parameters (i.e.) speed, feed rate and depth of cut. Since the end milling process is used for abrading the wear caused is very high, in order to reduce the wear caused by high cutting force and to decrease the surface roughness, the optimization is much needed for this process. Especially for materials like aluminium 7010, this kind of study is important for further improvement in machining process and also it will improve the stability of the machine.


2012 ◽  
Vol 576 ◽  
pp. 99-102 ◽  
Author(s):  
Erry Yulian Triblas Adesta ◽  
Muataz H.F. Al Hazza ◽  
M.Y. Suprianto ◽  
Muhammad Riza

Surface roughness affects the functional attributes of finished parts. Therefore, predicting the finish surface is important to select the cutting levels in order to reach the required quality. In this research an experimental investigation was conducted to predict the surface roughness in the finish end milling process with higher cutting speed. Twenty sets of data for finish end milling on AISI H13 at hardness of 48 HRC have been collected based on five-level of Central Composite Design (CCD). All the experiments done by using indexable tool holder Sandvick Coromill R490 and the insert was PVD coated TiAlN carbide. The experimental work performed to predict four different roughness parameters; arithmetic mean roughness (Ra), total roughness (Rt), mean depth of roughness (Rz) and the root mean square (Rq).


Author(s):  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Nguyen Tien Tung ◽  
Nguyen Duc Luan

In this study, the influence of cutting parameters and machining time on the tool wear and surface roughness was investigated in high-speed milling process of Al6061 using face carbide inserts. Taguchi experimental matrix (L9) was chosen to design and conduct the experimental research with three input parameters (feed rate, cutting speed, and axial depth of cut). Tool wear (VB) and surface roughness (Ra) after different machining strokes (after 10, 30, and 50 machining strokes) were selected as the output parameters. In almost cases of high-speed face milling process, the most significant factor that influenced on the tool wear was cutting speed (84.94 % after 10 machining strokes, 52.13 % after 30 machining strokes, and 68.58 % after 50 machining strokes), and the most significant factors that influenced on the surface roughness were depth of cut and feed rate (70.54 % after 10 machining strokes, 43.28 % after 30 machining strokes, and 30.97 % after 50 machining strokes for depth of cut. And 22.01 % after 10 machining strokes, 44.39 % after 30 machining strokes, and 66.58 % after 50 machining strokes for feed rate). Linear regression was the most suitable regression of VB and Ra with the determination coefficients (R2) from 88.00 % to 91.99 % for VB, and from 90.24 % to 96.84 % for Ra. These regression models were successfully verified by comparison between predicted and measured results of VB and Ra. Besides, the relationship of VB, Ra, and different machining strokes was also investigated and evaluated. Tool wear, surface roughness models, and their relationship that were found in this study can be used to improve the surface quality and reduce the tool wear in the high-speed face milling of aluminum alloy Al6061


Manufacturing ◽  
2002 ◽  
Author(s):  
Hazim El-Mounayri ◽  
Zakir Dugla ◽  
Haiyan Deng

A new technique from EC (Evolutionary Computation), PSO (Particle Swarm Optimization), is implemented to model the end milling process and predict the resulting surface roughness. Data collected from cutting experiments is used for model calibration and validation. The inputs to the model consist of Feed, Speed and Depth of cut while the output from the model is surface roughness. The model is validated through a comparison of the experimental values with their predicted counterparts. A good agreement is found. The proved technique opens the door for a new, simple and efficient approach that could be applied to the calibration of other empirical models of machining.


2015 ◽  
Vol 809-810 ◽  
pp. 129-134 ◽  
Author(s):  
Alina Bianca Bonţiu Pop ◽  
Mircea Lobonţiu

Surface quality is affected by various processing parameters and inherent uncertainties of the metal cutting process. Therefore, the surface roughness anticipation becomes a real challenge for engineers and researchers. In previous researches [1] I have investigated the feed rate influence on surface roughness and manufacturing time reduction. The 7136 aluminum alloy was machined by end milling operation using standard tools for aluminum machining. The purpose of this paper is to identify by experiments the influence of cutting speed variation on surface roughness. The scientific contribution brought by this research is the improvement of the end milling process of 7136 aluminum alloy. This material is an aluminum alloy developed by Universal Alloy Corporation and is used in the aircraft industry to manufacture parts from extruded profiles. The research method used to solve the problem is experiment. A range of cutting speeds was used while the cutting depth and the feed per tooth were constrained per minimum and maximum requirements defined for the given cutting tool. The experiment was performed by using a 16 mm End milling cutter, holding two indexable cutting inserts. The machine used for the milling tests was a HAAS VF2 CNC. The surface roughness (response) was measured by using a portable surface roughness tester (TESA RUGOSURF 20 Portable Surface Finish Instrument). Following the experimental research, results were obtained which highlight the cutting speed influence on surface roughness. Based on these results we created roughness variation diagrams according to the cutting speed for each value of feed per tooth and cutting depth. The final results will be used as data for future research.


2015 ◽  
Vol 799-800 ◽  
pp. 324-328
Author(s):  
Panrawee Yaisuk ◽  
Somkiat Tangjitsitcharoen

The surface roughness is monitored using the cutting force and the cutting temperature in the ball-end milling process by utilizing the response surface analysis with the Box-Behnken design. The optimum cutting condition is obtained referring to the minimum surface roughness, which is the spindle speed, the feed rate, the depth of cut, and the tool diameter. The models of cutting force ratio and the cutting temperature are proposed and developed based on the experimental results. It is understood that the surface roughness is improved with an increase in spindle speed, feed rate and depth of cut. The cutting temperature decreases with an increase in tool diameter. The model verification has showed that the experimentally obtained surface roughness model is reliable and accurate to estimate the surface roughness.


2011 ◽  
Vol 325 ◽  
pp. 594-599 ◽  
Author(s):  
Hiroo Shizuka ◽  
Koichi Okuda ◽  
Masayuki Nunobiki ◽  
Yasuhito Inada

The effects of cutting conditions on the surface roughness in a micro-end-milling process of a mold material are described in this paper. Micro-end-milling operations were performed under different cutting conditions such as feed rate and depth of cut, in order to investigate the factors that had the greatest influence on the finished surface during micro-end-milling. It was revealed that the surface roughness begins to deteriorate when the radial depth of the cut exceeds the tool radius. In addition, it was found that this phenomenon is peculiar to micro-end-milling processes.


2012 ◽  
Vol 576 ◽  
pp. 51-55 ◽  
Author(s):  
Syidatul Akma Sulaiman ◽  
A.K.M. Nurul Amin ◽  
M.D. Arif

This paper presents the effect of cutting parameters on surface roughness in end milling of Titanium alloy Ti-6Al-4V under the influence of magnetic field from permanent magnets. Response Surface Methodology (RSM) with a small central composite design was used in developing the relationship between cutting speed, feed, and depth of cut, with surface roughness. In this experiment, three factors and five levels of central composite with 0.16817 alpha value was used as an approach to predict the surface roughness, in end milling of titanium alloy, with reasonable accuracy. The Design-Expert 6.0 software was applied to develop the surface roughness equation for the predictive model. The adequacy of the surface roughness model was validated to 95% by using ANOVA analysis. Finally, desirability function approach was used to determine the optimum possible surface roughness given the capabilities of the end machine.


Sign in / Sign up

Export Citation Format

Share Document