scholarly journals Immobilization of Heavy Metals in Contaminated Soils—Performance Assessment in Conditions Similar to a Real Scenario

2020 ◽  
Vol 10 (22) ◽  
pp. 7950 ◽  
Author(s):  
Antonio A. S. Correia ◽  
Martim P. S. R. Matos ◽  
Ana R. Gomes ◽  
Maria G. Rasteiro

Soil “health” is becoming an increasing concern of modern societies, namely, at the European level, considering its importance to the fields of food, clean water, biodiversity, and even climate change control. On the other hand, human activities are contributing more and more to induce contamination in soils, especially in industrialized societies. This experimental work studies different additives (carbon nanotubes, clay, and Portland cement) with the aim to evaluate their effect on heavy metals, HMs (lead, cooper, nickel, and zinc) immobilization in a contaminated soil in conditions similar to a real scenario. Suspension adsorption tests (fluid-like condition) were performed aiming to supply preliminary information about the adsorption capacity of the soil towards the different HMs tested, while percolation tests (solid-like conditions) were performed aiming to evaluate the HMs immobilization by different additives in conditions similar to a real situation of soil contamination. Results showed that soil particles alone were able to retain considerable amounts of HMs (especially Pb and Cu) which is linked to their fine grain size and the soil high organic matter content. In conditions of good dispersion of the additives, addition of carbon nanotubes or clay can rise the HMs adsorption, except in the case of Zn2+ due to its low electronegativity and high mobility. Moreover, the addition of cement to the soil showed a high capacity to immobilize the HMs which is due to the chemical fixation of the HMs to binder hydration products. In this case, HMs immobilization comes associated with a soil stabilization strategy. The results allow to conclude that the additives, carbon nanotubes and clay, have the potential to minimize HMs mobility in contaminated soils and can be a valid alternative to the usual additive, Portland cement, when tested in conditions similar to a real on-site situation, if the objective is not to induce also soil stabilization, for instance, to enable its use for construction purposes. The results obtained can help designers and decision-makers in the choice of the best materials to remediate HMs contaminated soils.

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 878
Author(s):  
Dorota Pikuła ◽  
Wojciech Stępień

Adjusting Polish law to EU standards, many studies were started in the 1990s on the harmfulness of presumably contaminating elements (PCE) to the environment and the quality of plants intended produced for food purposes. For this reason, in 1987, a unique microplate experiment was established on natural soils artificially contaminated with copper, zinc, lead and cadmium oxides (up to the pollution level of class I, II and III). The soils were diversified in terms of pH (through liming), organic matter content (through the addition of brown coal) and the grain size composition of the humus level (Ap) (strong clay sand and light silt clay). After 14 years from the introduction of different rates of metals into the top layer (0–30 cm) of the two soils studied, relatively large movement of heavy metals in the soil profile occurred. The amount of leached metals depended mainly on the rate of a given element. The more contaminated was the soil was, the heavier the metals that leached to lower genetic levels of soil. Contaminated soils always had a higher concentration of individual metals in Et than in Bt level. The content of the tested metals in the Et layer was determined in HCl (1 mol·dm−3) and compared to the humus level. Only at the soil depth below 50 cm (Bt), the content of the studied metals’ forms was much lower than in the surface levels. The calculated mobility coefficients of the tested metals determined in 1 M HCl indicate a larger movement of the tested metals in lighter soils than in medium soils. The highest displacement coefficients were obtained for cadmium, while the lowest were for lead. An increase in mobility was obtained alongside an increase in soil contamination with the heavy metals studied. By analyzing the mobility coefficients (heavy metal increase in the Bt and Et layers), they can be ranked in the following decreasing sequence: on light soils: Cd > Cu > Zn > Pb and on medium soils: Cd > Zn > Pb > Cu.


2020 ◽  
Vol 12 (2) ◽  
pp. 420-432
Author(s):  
Kelechi L. NJOKU ◽  
Omolola E. OJO ◽  
Anuoluwapo O. JOLAOSO

The performance and impact of Senna alata on experimental heavy metal contaminated soil were investigated in this study. Soils in different pots were contaminated with different levels of lead, nickel, chromium and cadmium based on WHO limits for heavy metals. Seeds of S. alata were planted in the contaminated soils. The plant growth was studied for 60 days.  Some soil parameters and heavy metal contents of the soil were evaluated at the beginning and at the end of the study. The leaf area, the plant height and the number of actively growing stems decreased with increase in the amount of each metal added to the soil. At 60 days, there was significant reduction (p<0.05) of the heavy metals due to the growth of S. alata compared to the soil without the plant. There was reduction in the total organic matter content and the pH of the soil, but the moisture content of the contaminated soils generally increased due to the growth of S. alata. There was a positive correlation (p = 0.918) between the percentage remediation and the bioaccumulation factor, suggesting that the remediation of the heavy metals by the plant mostly occurred through bioaccumulation. A positive correlation between the percentage reduction of the heavy metals and the reduction of pH of the soil noticed suggests that growth of S. alata leads to decrease in soil pH and will enhance the remediation of soil contaminated with the heavy metals. The findings of this study show that apart from the medicinal values of S. alata, it can be useful in remediation of heavy metal polluted soils which occurs mostly through phytoextraction.  


1970 ◽  
Vol 39 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Ashafaque Ahmed ◽  
Mikael Ohlson ◽  
Sirajul Hoque ◽  
Md Golam Moula

Chemical composition of leaves of Sonneratia apetala Buch.-Ham. collected from three islands (chars) representing three hydrological regimes in a segment of the coastal zone of Bangladesh was studied. Their relations to some soil chemical and physical variables have also been investigated. The results showed that concentrations of B, C, Fe, Ga, Li, Mg, Mn, N, Na, P, Zn and Sr in leaves of S. apetala grown in different islands differed significantly. It was also revealed that some heavy metals, viz. Mn, Fe, Al, Sr and Ti showed wide range of concentrations. The leaves from one of the locations in Motherbunia island were characterized by exceptional high concentrations of heavy metals such as Al, As, Cu, Fe, Li, Ni, Pb that may be due to local contamination. Leaves sampled in the most seaward locations of the same island had highest concentrations of Ba, Ca, Cu, Mn and Na. High Mn concentration was found in the leaves of S. apetala of Motherbunia island. Correlations among soil and plant samples were generally very weak and organic matter content of soil did not appear to play a significant role in the nutrient supply of S. apetala. Key words: Coastal zone; tidal inundation; elemental concentration; Sonneratia apetala DOI: 10.3329/bjb.v39i1.5528Bangladesh J. Bot. 39(1): 61-69, 2010 (June)


2002 ◽  
Vol 82 (4) ◽  
pp. 433-438 ◽  
Author(s):  
M T Morera ◽  
J. Echeverría ◽  
J. Garrido

The recycling of sewage sludge to agricultural land results in the slow accumulation of potentially toxic heavy metals in soils. A greenhouse experiment was conducted to determine the bioavailability of Cu, Ni, Pb and Zn applied to soils in urban anaerobically stabilized sewage sludge. The soils were Lithic Haplumbrept (Lh), Calcixerollic Xerochrept (Cx1 and Cx2) and Paralithic Xerorthent (Px). Sunflower plants (Helianthus annuus L) were grown in the soils following amendment with the sludge. The addition of sewage sludge markedly increased the average dry weight of the plants in the soils that had lower yields without sludge addition (Lh, Cx2, and Px). The acid pH of the Lh soil favoured the bioavailability of Zn from sewage sludge. The bioavailability of Cu was greater in the alkaline soils than in the acidic soil (Lh), which can be attributed to the high organic matter content of the Lh soil which complexes Cu and impairs its uptake by the plants. The concentration of metals in the plants increased with the sewage sludge dose. The effect of the soil type on the metal concentration in plants was greater that the effect of the dose. Key words: Soils, sewage sludge, heavy metals, bioavailability, sunflower


Author(s):  
Justyna Kujawska ◽  
Katarzyna Wójcik-Oliveira

Sewage sludge and its management constitute one of the most important environmental problems. The introduced the Sewage Sludge Directive 86/278/EEC advocate utilization of sewage sludge in agriculture. However, this method is limited mainly by the availability of heavy metals and pathogens. An ecotoxicological assessment of sewage sludge doses applied to soil, recommended in the Polish Regulation of the Minister of Environment of 6th February 2015 on municipial sewage sludge, was carried out. The sewage sludge was added to soil in the amounts of 3, 6, 9, and 15 Mg/ha. The produced mixtures were subjected to physicochemical and ecotoxicological tests, involving the biomass and mortality tests of Eisenia fetida earthworms. The sewage sludge had a statistically significant impact on the increase in: electrical conductivity, total exchangeable cations, organic matter content, organic carbon, nitrogen and heavy metals of the considered soil. The impact on the biomass of earthworms was different; after 7 days in the mixtures with 3 Mg/ha and 6 Mg/ha sewage sludge addition, the biomass increased approximately by 1.3-fold, in comparison to non-modified soil. At 9 Mg/ha, it reduced by 1.3-fold, whereas at 15 Mg/ha – by 16-fold, in relation to the initial value. The studies indicated that the ecotoxicological assessment of wastes may be employed as environmental safety control measure of the sewage sludge application in agriculture.


1998 ◽  
Vol 49 (6) ◽  
pp. 533 ◽  
Author(s):  
Jonathan S. Stark

The influence of heavy metals (copper, lead and zinc) associated with urban runoff, on assemblages of macrofauna in intertidal soft sediments was studied in two estuaries in the Sydney region. The patterns of distribution and abundance of fauna and assemblages was found to vary significantly at several spatial scales: within bays in an estuary, between bays within an estuary and between bays from different estuaries. Significant differences were found in concentrations of heavy metals in sediments, but there was very little difference among bays in other environmental variables: grain-size characteristics and organic matter content of sediments. Bays polluted by heavy metals had significantly different assemblages to unpolluted bays, were generally less diverse and were characterized by an order-of-magnitude greater abundance of capitellids, spionids, nereids and bivalves. Unpolluted bays had greater abundance of crustaceans and several polychaete families, including paraonids and nephtyids and were generally more diverse. There was a significant correlation between patterns of assemblages and concentrations of heavy metals, but not with other environmental variables.


2008 ◽  
Vol 53 (No. 5) ◽  
pp. 225-238 ◽  
Author(s):  
N. Finžgar ◽  
P. Tlustoš ◽  
D. Leštan

Sequential extractions, metal uptake by <i>Taraxacum officinale</i>, Ruby&rsquo;s physiologically based extraction test (PBET) and toxicity characteristic leaching procedure (TCLP), were used to assess the risk of Pb and Zn in contaminated soils, and to determine relationships among soil characteristics, heavy metals soil fractionation, bioavailability and leachability. Regression analysis using linear and 2nd order polynomial models indicated relationships between Pb and Zn contamination and soil properties, although of small significance (<i>P</i> < 0.05). Statistically highly significant correlations (<i>P</i> < 0.001) were obtained using multiple regression analysis. A correlation between soil cation exchange capacity (CEC) and soil organic matter and clay content was expected. The proportion of Pb in the PBET intestinal phase correlated with total soil Pb and Pb bound to soil oxides and the organic matter fraction. The leachable Pb, extracted with TCLP, correlated with the Pb bound to carbonates and soil organic matter content (<i>R</i><sup>2</sup> = 69%). No highly significant correlations (<i>P</i> < 0.001) for Zn with soil properties or Zn fractionation were obtained using multiple regression.


2017 ◽  
Vol 19 (4) ◽  
Author(s):  
Martim P. S. R. Matos ◽  
António Alberto S. Correia ◽  
Maria G. Rasteiro

Author(s):  
Francesco Lombardi ◽  
Giulia Costa ◽  
Maria Chiara Di Lonardo ◽  
Alessio Lieto

This work evaluated and compared potential impacts related to the accumulation and/or release of heavy metals resulting from the application of different types of stabilized waste to soil. Namely, the following three types of flows were considered: waste produced by aerobic bio-stabilization of municipal solid waste at a Mechanical Biological Treatment (MBT) plant, and compost produced either from aerobic composting or from a combination of anaerobic and aerobic biodegradation processes. After a preliminary characterization of the materials (organic matter content, volatile solid, and heavy metals content), heavy metal accumulation in soil caused by possible long-term application of these organic materials was evaluated by implementing a discretized mass balance based on the total content of the heavy metals in each type of solid matrix investigated. In addition, results of percolation leaching tests performed on each type of material were presented and discussed. Results highlight that although the total content of heavy metals of the three types of materials differed considerably, with the MBT waste presenting the highest concentrations, the results of the leaching percolation tests were quite similar.


Sign in / Sign up

Export Citation Format

Share Document