Heavy metal pollution and macrobenthic assemblages in soft sediments in two Sydney estuaries, Australia

1998 ◽  
Vol 49 (6) ◽  
pp. 533 ◽  
Author(s):  
Jonathan S. Stark

The influence of heavy metals (copper, lead and zinc) associated with urban runoff, on assemblages of macrofauna in intertidal soft sediments was studied in two estuaries in the Sydney region. The patterns of distribution and abundance of fauna and assemblages was found to vary significantly at several spatial scales: within bays in an estuary, between bays within an estuary and between bays from different estuaries. Significant differences were found in concentrations of heavy metals in sediments, but there was very little difference among bays in other environmental variables: grain-size characteristics and organic matter content of sediments. Bays polluted by heavy metals had significantly different assemblages to unpolluted bays, were generally less diverse and were characterized by an order-of-magnitude greater abundance of capitellids, spionids, nereids and bivalves. Unpolluted bays had greater abundance of crustaceans and several polychaete families, including paraonids and nephtyids and were generally more diverse. There was a significant correlation between patterns of assemblages and concentrations of heavy metals, but not with other environmental variables.

1994 ◽  
Vol 45 (2) ◽  
pp. 177 ◽  
Author(s):  
DJ Morrisey ◽  
JS Stark ◽  
L Howitt ◽  
AJ Underwood

Spatial variation in the distribution of copper, lead and zinc in sediments in Botany Bay, Australia, is described. Sampling was done according to a nested, hierarchical design, and variation was detected at spatial scales from 10 m to several kilometres. In studies where the design of sampling is inadequate, the existence of variation at small spatial scales will confound comparisons at larger scales. Adequate replication at different scales, necessary to avoid confounding, has rarely been done in published studies. Implications of 'patchiness' for environmental sampling and monitoring, and the means of overcoming associated problems, are discussed.


2013 ◽  
Vol 64 (1) ◽  
pp. 19-23 ◽  
Author(s):  
Jolanta Kwiatkowska-Malina ◽  
Alina Maciejewska

Abstract Organic matter takes part in all soil processes and influences the physical, chemical and biological properties of soil. The paper presents the analysis of heavy metal contents (Zn, Pb, Cd) in soil and biomass of darnel multifloral (Lolium multiflorum Lam.) cultivated at diverse conditions of soil reaction and organic matter content. A brown coal preparation (Rekulter) was applied as the source of organic matter in autumn 1999 to the studied soil, which was contaminated with cadmium, lead and zinc. The limiting influence of Rekulter on the uptake of heavy metals by darnel multifloral (two cuts of the test plant) was the highest in the case when the largest dose was applied to soil with the highest pH (about 6.0). Bioaccumulation indexes (BI) for Cd, Pb, Zn indicate the mobility and bioavailability of Cd, Pb and Zn in soils. The BI for particular heavy metals were generally low, with the lowest in the case when the largest dose of Rekulter was applied to all cuts of the test plant


1970 ◽  
Vol 39 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Ashafaque Ahmed ◽  
Mikael Ohlson ◽  
Sirajul Hoque ◽  
Md Golam Moula

Chemical composition of leaves of Sonneratia apetala Buch.-Ham. collected from three islands (chars) representing three hydrological regimes in a segment of the coastal zone of Bangladesh was studied. Their relations to some soil chemical and physical variables have also been investigated. The results showed that concentrations of B, C, Fe, Ga, Li, Mg, Mn, N, Na, P, Zn and Sr in leaves of S. apetala grown in different islands differed significantly. It was also revealed that some heavy metals, viz. Mn, Fe, Al, Sr and Ti showed wide range of concentrations. The leaves from one of the locations in Motherbunia island were characterized by exceptional high concentrations of heavy metals such as Al, As, Cu, Fe, Li, Ni, Pb that may be due to local contamination. Leaves sampled in the most seaward locations of the same island had highest concentrations of Ba, Ca, Cu, Mn and Na. High Mn concentration was found in the leaves of S. apetala of Motherbunia island. Correlations among soil and plant samples were generally very weak and organic matter content of soil did not appear to play a significant role in the nutrient supply of S. apetala. Key words: Coastal zone; tidal inundation; elemental concentration; Sonneratia apetala DOI: 10.3329/bjb.v39i1.5528Bangladesh J. Bot. 39(1): 61-69, 2010 (June)


2002 ◽  
Vol 82 (4) ◽  
pp. 433-438 ◽  
Author(s):  
M T Morera ◽  
J. Echeverría ◽  
J. Garrido

The recycling of sewage sludge to agricultural land results in the slow accumulation of potentially toxic heavy metals in soils. A greenhouse experiment was conducted to determine the bioavailability of Cu, Ni, Pb and Zn applied to soils in urban anaerobically stabilized sewage sludge. The soils were Lithic Haplumbrept (Lh), Calcixerollic Xerochrept (Cx1 and Cx2) and Paralithic Xerorthent (Px). Sunflower plants (Helianthus annuus L) were grown in the soils following amendment with the sludge. The addition of sewage sludge markedly increased the average dry weight of the plants in the soils that had lower yields without sludge addition (Lh, Cx2, and Px). The acid pH of the Lh soil favoured the bioavailability of Zn from sewage sludge. The bioavailability of Cu was greater in the alkaline soils than in the acidic soil (Lh), which can be attributed to the high organic matter content of the Lh soil which complexes Cu and impairs its uptake by the plants. The concentration of metals in the plants increased with the sewage sludge dose. The effect of the soil type on the metal concentration in plants was greater that the effect of the dose. Key words: Soils, sewage sludge, heavy metals, bioavailability, sunflower


Author(s):  
Justyna Kujawska ◽  
Katarzyna Wójcik-Oliveira

Sewage sludge and its management constitute one of the most important environmental problems. The introduced the Sewage Sludge Directive 86/278/EEC advocate utilization of sewage sludge in agriculture. However, this method is limited mainly by the availability of heavy metals and pathogens. An ecotoxicological assessment of sewage sludge doses applied to soil, recommended in the Polish Regulation of the Minister of Environment of 6th February 2015 on municipial sewage sludge, was carried out. The sewage sludge was added to soil in the amounts of 3, 6, 9, and 15 Mg/ha. The produced mixtures were subjected to physicochemical and ecotoxicological tests, involving the biomass and mortality tests of Eisenia fetida earthworms. The sewage sludge had a statistically significant impact on the increase in: electrical conductivity, total exchangeable cations, organic matter content, organic carbon, nitrogen and heavy metals of the considered soil. The impact on the biomass of earthworms was different; after 7 days in the mixtures with 3 Mg/ha and 6 Mg/ha sewage sludge addition, the biomass increased approximately by 1.3-fold, in comparison to non-modified soil. At 9 Mg/ha, it reduced by 1.3-fold, whereas at 15 Mg/ha – by 16-fold, in relation to the initial value. The studies indicated that the ecotoxicological assessment of wastes may be employed as environmental safety control measure of the sewage sludge application in agriculture.


2016 ◽  
Vol 120 ◽  
pp. 191-201 ◽  
Author(s):  
Puri Veiga ◽  
Ana Catarina Torres ◽  
Fernando Aneiros ◽  
Isabel Sousa-Pinto ◽  
Jesús S. Troncoso ◽  
...  

2003 ◽  
Vol 7 (3) ◽  
pp. 423-427 ◽  
Author(s):  
G. Sakalauskiene ◽  
G. Ignatavicius

Abstract. In August and September 2002, concentrations of heavy metals (copper, lead, and zinc) were 21-74% more than in previous years in Lithuanian rivers. Such a sudden increase in heavy metal pollution reduces the value of any water body for fishing or recreation and poses a potential risk to the environment and to human health. Droughts in the summer of 2002 led to forest and peat bog fires all over Lithuania and may have caused the increase in concentrations of heavy metals detected in Lithuanian rivers in August 2002. The fires could have changed the pH in the top layers of the soil, overcome geochemical barriers in the soil and enabled heavy metals to migrate from the soil to the groundwater and from river bottom sediments to the surface water. Keywords: heavy metals, river water quality, Lithuania


2019 ◽  
Vol 112 ◽  
pp. 03020
Author(s):  
Mihaela Niţu ◽  
Augustina Pruteanu ◽  
Despina Maria Bordean ◽  
Carmen Popescu ◽  
Gyorghy Deak ◽  
...  

Heavy metals in contaminated soils have benefited from a considerable attention due to the possible risks for the human body. The current study has investigated the accumulation and transfer coefficient for three heavy metals (Cu, Pb, Zn) found in the contaminated soil with three concentrations (c1=1.5%, c2=3.0%, c3=4.5%, c4=6.0%), obtained by mixing the three metals, in the tomato fruit. The highest accumulation in the tomato fruits was recorded for zinc, then copper and the smallest for lead, for all four concentrations used. The transfer coefficient decreases as the concentration of heavy metals increases, so that for high heavy metals concentrations, the values of the transfer coefficient are very low, and for small heavy metals concentrations in the soil, the values for the transfer coefficient are higher. The assessment of accumulation and transfer of heavy metals in the fruits of tomatoes grown in the contaminated soil has concluded that all concentrations of the copper, lead and zinc mix have shown a low risk for human consumption.


Author(s):  
Francesco Lombardi ◽  
Giulia Costa ◽  
Maria Chiara Di Lonardo ◽  
Alessio Lieto

This work evaluated and compared potential impacts related to the accumulation and/or release of heavy metals resulting from the application of different types of stabilized waste to soil. Namely, the following three types of flows were considered: waste produced by aerobic bio-stabilization of municipal solid waste at a Mechanical Biological Treatment (MBT) plant, and compost produced either from aerobic composting or from a combination of anaerobic and aerobic biodegradation processes. After a preliminary characterization of the materials (organic matter content, volatile solid, and heavy metals content), heavy metal accumulation in soil caused by possible long-term application of these organic materials was evaluated by implementing a discretized mass balance based on the total content of the heavy metals in each type of solid matrix investigated. In addition, results of percolation leaching tests performed on each type of material were presented and discussed. Results highlight that although the total content of heavy metals of the three types of materials differed considerably, with the MBT waste presenting the highest concentrations, the results of the leaching percolation tests were quite similar.


Author(s):  
Angela Kuriata-Potasznik ◽  
Sławomir Szymczyk ◽  
Dorota Pilejczyk

Water bodies of river-lake systems can act as barriers in the movement of nutrients and toxic heavy metals outside their water catchment area. These components can be suspended in the water column, deposited in bottom sediments or bioaccumulated by the vegetation in the water body. A constant exchange of substances takes place between bottom sediments and macrophytes. The composition of bottom sediments and their distribution affects the intensity of nutrients and metals assimilation by macrophytes in the river-lake systems. The aim of research was to analyse the effect of bottom sediments on the nutrients and metal content in macrophytes. It was demonstrated that tissues of plants anchored in sediments that were more abundant in nutrients had higher contents of biogenic components and heavy metals. The properties of bottom sediments, mainly their granulometric composition, but also organic matter content and pH, determine the content of biogenes and heavy metals in macrophytes to a significant extent. On the other hand, it was demonstrated that aquatic plants could affect the grain size in the sediments. Macrophytes and sediments of river-lake systems play a very important role in reducing the transport of nutrients outside the area of the system, through capturing and incorporating them into the tissues of aquatic plants.


Sign in / Sign up

Export Citation Format

Share Document