scholarly journals Multiscale Modelling Approach Targeting Optimisation of PCM into Constructive Solutions for Overheating Mitigation in Buildings

2020 ◽  
Vol 10 (22) ◽  
pp. 8009
Author(s):  
António Figueiredo ◽  
Romeu Vicente ◽  
Rui Oliveira ◽  
Fernanda Rodrigues ◽  
António Samagaio

Nowadays, the rising gap between the global energy supply and demand is a well-known circumstance in society. Exploring the solution to invert this tendency leads to several different scenarios of energy demand saving strategies that can be improved using phase change materials (PCM), especially in cold-formed steel-framed buildings. The present research reports the overheating (indoor air temperature above 26 °C expressed as an annualized percentage rate) reduction in south-oriented compartments and energy performance of a detached house located in the Aveiro region, in Portugal. An optimisation study was performed incorporating different phase change materials (PCMs) solutions and their position in the exterior envelope focusing overheating rate reduction and heating demand. The optimisations were managed by using a hybrid evolutionary algorithm coupled with EnergyPlus® simulation software. The overheating risk was reduced by up to 24% in the cooling season, for the case of the building compartments with south orientation. Thus, the use of construction solutions using PCMs with different melting temperatures revealed to be a good strategy to maximise PCM efficiency as a passive solution.

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4872 ◽  
Author(s):  
Enghok Leang ◽  
Pierre Tittelein ◽  
Laurent Zalewski ◽  
Stéphane Lassue

As the heating demands of buildings drop considerably, the use of solar walls makes increasing sense. One of the obstacles to the development of such walls is their need for on-site implementation by specialized companies. On the other hand, a storage wall is generally composed of heavy materials with high inertia, which prevents prefabrication of the solar component. To avoid this problem and allow for solar walls to be prefabricated in the factory, a novel approach to replacing this heavy wall with a lighter storage wall incorporating phase change materials (PCM) has been proposed. This paper aims to demonstrate the impact of PCM on the thermal energy performance once they have been integrated into the storage wall of the composite Trombe wall. Addressed herein will be the heat transfer exchange inside a house located in the northern part of France, where a composite Trombe wall has been fitted without PCM. Three configurations will be investigated—(1) the model house without the solar Trombe wall, defined as the reference configuration; (2) the model house integrating the concrete solar Trombe wall; and (3) the model house integrating the PCM solar Trombe wall. Two setpoint temperatures will be introduced—(a) a constant setpoint of 20 °C, and (b) a variable setpoint of 19 °C (14 h from 7:00 a.m. to 9:00 p.m.) and 16 °C (10 h from 9:00 p.m. to 7:00 a.m.). Furthermore, three different climate conditions will be adopted to run simulations—Paris-Orly, Lyon, and Nice. Dymola/Modelica, a dynamic thermal simulation tool, will be utilized to simulate the thermal performance of these defined configurations. The results obtained, regarding a solar Trombe wall installation that applies two distinct storage walls exposed to the weather of Paris, showed similar minimizations of the one-year energy heating demand inside the bedroom, equal to roughly 20% (i.e., 20.45% of concrete storage wall and 19.90% of PCM storage wall) compared to the reference configuration (i.e., the house with no solar Trombe wall). Based on the imposed setpoint temperature by means of night and day reductions, the resulting heating energy demand in the bedroom, through application of the two storage walls (concrete and PCM) and three different climatic regions could be minimized by 20.34% in Paris, 20.20% in Lyon, and 68.10% in Nice (for the concrete storage wall) vs. the reference configuration; and by 18.79% in Paris, 19.56% in Lyon, and 55.15% in Nice (for the PCM storage wall) vs. the reference configuration.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 41
Author(s):  
Hanae El Fakiri ◽  
Lahoucine Ouhsaine ◽  
Abdelmajid El Bouardi

The thermal dynamic behavior of buildings represents an important aspect of the energy efficiency and thermal comfort of the indoor environment. For this, phase change material (PCM) wallboards integrated into building envelopes play an important role in stabilizing the temperature of the human comfort condition. This article provides an assessment of the thermal behavior of a “bi-zone” building cell, which was built based on high-energy performance (HEP) standards and heated by a solar water heater system through a hydronic circuit. The current study is based on studying the dynamic thermal behavior, with and without implantation of PCMs on envelope structure, using a simplified modeling approach. The evolution of the average air temperature was first evaluated as a major indicator of thermal comfort. Then, an evaluation of the thermal behavior’s dynamic profile was carried out in this study, which allowed for the determination of the PCM rate anticipation in the thermal comfort of the building cell.


2021 ◽  
Vol 13 (3) ◽  
pp. 1257
Author(s):  
Luis Godoy-Vaca ◽  
E. Catalina Vallejo-Coral ◽  
Javier Martínez-Gómez ◽  
Marco Orozco ◽  
Geovanna Villacreses

This work aims to estimate the expected hours of Predicted Medium Vote (PMV) thermal comfort in Ecuadorian social housing houses applying energy simulations with Phase Change Materials (PCMs) for very hot-humid climates. First, a novel methodology for characterizing three different types of social housing is presented based on a space-time analysis of the electricity consumption in a residential complex. Next, the increase in energy demand under climate influences is analyzed. Moreover, with the goal of enlarging the time of thermal comfort inside the houses, the most suitable PCM for them is determined. This paper includes both simulations and comparisons of thermal behavior by means of the PMV methodology of four types of PCMs selected. From the performed energy simulations, the results show that changing the deck and using RT25-RT30 in walls, it is possible to increase the duration of thermal comfort in at least one of the three analyzed houses. The applied PCM showed 46% of comfortable hours and a reduction of 937 h in which the thermal sensation varies from “very hot” to “hot”. Additionally, the usage time of air conditioning decreases, assuring the thermal comfort for the inhabitants during a higher number of hours per day.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2154
Author(s):  
Angelo Maiorino ◽  
Adrián Mota-Babiloni ◽  
Manuel Gesù Del Duca ◽  
Ciro Aprea

Phase Change Materials (PCMs) incorporated in refrigerators can be used to shift their energy consumption from peak periods, when the electric network energy demand is the highest, to off-peak periods. While PCMs can flatten the energy demand curve, they can achieve economic savings if Time-of-Use (TOU) electricity tariffs are applied. However, the hourly carbon emission factor is not commonly linked to the hourly tariff, and the final CO2 emitted due to the operations of the refrigerator would not be fully optimized. In this work, a method based on the Simulated Annealing optimization technique was proposed to identify the optimal working schedule of a cabinet refrigerator incorporating a PCM to reduce its indirect carbon emissions. Data from countries with different representative carbon intensity profiles were used. The normalized standard deviation and normalized range are the best statistical indexes to predict carbon emission reduction in the proposed solution. These parameters proved that countries with a higher hourly carbon intensity variation (Uruguay, France, Denmark, and Germany) benefit from the application of the algorithm. Cost and carbon emission reduction cannot be maximized simultaneously, and a trade-off is required.


2019 ◽  
Vol 111 ◽  
pp. 03035 ◽  
Author(s):  
Raimo Simson ◽  
Endrik Arumägi ◽  
Kalle Kuusk ◽  
Jarek Kurnitski

In the member states of the European Union (EU), nearly-Zero Energy Buildings (nZEB) are becoming mandatory building practice in 2021. It is stated, that nZEB should be cost-optimal and the energy performance levels should be re-defined after every five years. We conducted cost-optimality analyses for two detached houses, one terraced house and one apartment building in Estonia. The analysis consisted on actual construction cost data collection based on bids of variable solutions for building envelope, air tightness, windows, heat supply systems and local renewable energy production options. For energy performance analysis we used dynamic simulation software IDA-ICE. To assess cost-effectiveness, we used Net Present Value (NPV) calculations with the assessment period of 30 years. The results for cost-optimal energy performance level for detached house with heated space of ~100 m2 was 79 kWh/(m2 a), for the larger house (~200 m2) 87 kWh/(m2 a), for terraced house with heated space of ~600 m2 71 kWh/(m2 a) and for the apartment building 103 kWh/(m2 a) of primary energy including all energy use with domestic appliances. Thus, the decrease in cost-optimal level in a five-year period was ~60% for the detached house and ~40% for the apartment building, corresponding to a shift in two EPC classes.


2021 ◽  
Vol 5 (1) ◽  
pp. 31
Author(s):  
Antonis Peppas ◽  
Chrysa Politi

Industrial minerals are at the forefront of innovation and play an essential role in many innovative applications. Their functionalities and properties make them very versatile materials which are essential to many industries. A combination of properties such as heat capacity, density, price, availability, and eco-friendliness are exceptional and crucially advantageous of industrial minerals utilisation as thermal energy storage (TES) systems. This technology stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. In this context, the utilisation of industrial minerals as carriers for impregnating phase change materials (PCM) can deliver new innovative products acting as short-term energy storage systems for construction applications to the market. TES is a technology that can solve the existing mismatch of energy supply and demand and improve buildings’ system performance by smoothing temperature fluctuations, as well as improving the reliability of the heating and/or cooling source. However, the most recent publications in this area are focused on PCM-enhanced building components thermal and kinetics analysis rather than focusing on the building component scale. This study is focused on the industrial minerals-PCM application as part of the building’s envelope, aiming to determine the benefits for buildings in terms of thermal energy performance and renewable energy penetration based on real data, harvested by an intelligent monitored building in Lavrion Technological and Cultural Park operated solely for research activities.


2019 ◽  
Vol 9 (2) ◽  
pp. 225 ◽  
Author(s):  
Rebecca Ravotti ◽  
Oliver Fellmann ◽  
Nicolas Lardon ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

As global energy demand increases while primary sources and fossil fuels’ availability decrease, research has shifted its focus to thermal energy storage systems as alternative technologies able to cover for the mismatch between demand and supply. Among the different phase change materials available, esters possess particularly favorable properties with reported high enthalpies of fusion, low corrosivity, low toxicity, low supercooling, thermal and chemical stability as well as biodegradability and being derived from renewable feedstock. Despite such advantages, little to no data on the thermal behavior of esters is available due to low commercial availability. This study constitutes a continuation of previous works from the authors on the investigation of fatty esters as novel phase change materials. Here, methyl, pentyl and decyl esters of arachidic acid, and pentyl esters of myristic, palmitic, stearic and behenic acid are synthesized through Fischer esterification with high purities and their properties are studied. The chemical structures and purities are confirmed through Attenuated Total Reflectance Infrared Spectroscopy, Gas Chromatography coupled with Mass Spectroscopy and Nuclear Magnetic Resonance Spectroscopy, while the determination of the thermal properties is performed through Differential Scanning Calorimetry and Thermogravimetric Analysis. In conclusion, some correlations between the melting temperatures and the chemical structures are discovered, and the fatty esters are assessed based on their suitability as phase change materials for latent heat storage applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
A. Váz Sá ◽  
R. M. S. F. Almeida ◽  
H. Sousa ◽  
J. M. P. Q. Delgado

Building components with incorporated phase change materials (PCMs) meant to increase heat storage capacity and enable stabilization of interior buildings surface temperatures, whereby influencing the thermal comfort sensation and the stabilization of the interior ambient temperatures. The potential of advanced simulation tools to evaluate and optimize the usage of PCM in the control of indoor temperature, allowing for an improvement in the comfort conditions and/or in the cooling energy demand, was explored. This paper presents a numerical and sensitivity analysis of the enthalpy and melting temperature effect on the inside building comfort sensation potential of the plastering PCM.


Sign in / Sign up

Export Citation Format

Share Document