scholarly journals Performance Analysis of Multi-Spindle Drilling of Al2024 with TiN and TiCN Coated Drills Using Experimental and Artificial Neural Networks Technique

2020 ◽  
Vol 10 (23) ◽  
pp. 8633
Author(s):  
Muhammad Aamir ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Nouman Amjad Raja ◽  
Khaled Giasin

Multi-spindle drilling simultaneously produces multiple holes to save time and increase productivity. The assessment of hole quality is important in any drilling process and is influenced by characteristics of the cutting tool, drilling parameters and machine capacity. This study investigates the drilling performance of uncoated carbide, and coated carbide (TiN and TiCN) drills when machining Al2024 aluminium alloy. Thrust force and characteristics of hole quality, such as the presence of burrs and surface roughness, were evaluated. The results show that the uncoated carbide drills performed better than the TiN and TiCN coated tools at low spindle speeds, while TiCN coated drills produced better hole quality at higher spindle speeds. The TiN coated drills gave the highest thrust force and poorest hole quality when compared with the uncoated carbide and TiCN coated carbide drills. Additionally, a multi-layer perceptron neural network model was developed, which could be useful for industries and manufacturing engineers for predicting the surface roughness in multi-hole simultaneous drilling processes.

2012 ◽  
Vol 710 ◽  
pp. 353-358
Author(s):  
K. Vinoth Babu ◽  
J.T. Winowlin Jappes ◽  
T.P.D. Rajan

The present investigation is on the fabrication of SiC particles reinforced aluminum functionally graded disc and optimization of drilling process parameters using Taguchi method. The primary processing of A356-20%SiCpcomposite have been carried out by liquid metal stir casting technique followed by centrifugal casting leading to the formation of a functionally graded Al FGM disc with SiC particles segregating towards the outer periphery of the casting. The composite specimens are heat treated and used for the drilling studies. Taguchi method has been used to find the optimal drilling parameters for surface roughness and thrust force during drilling. The Taguchi Orthogonal arrays, signal-to-noise ratio (S/N) and Analysis of variance (ANOVA) are employed to study the performance characteristics in drilling operations of FGMMC using TiAlN coated carbide tools. The drilling parameters like cutting speed, feed and point angle in three different zones (15, 45, and 75 mm from the outer periphery) of FGMMC are optimized with considerations of surface roughness and thrust force.


2019 ◽  
Vol 8 (3) ◽  
pp. 2454-2459 ◽  

The present work efforts to determine CNC drilling performance and optimization of drilling parameters during drilling of treated JFRPPU-foam sandwich structures. In this drilling operation the ensuing process performance structures viz thrust, torque and delamination factor for entry and exit hole have been recognized. The effort has been made to regulate the optimal drilling parameters set. Taguchi method employed for design of experiment. The effects of parameters process such as composite geometry type, feed rate, drill speed, and drill size varied each at three different levels. In this experimentation sandwich structures L27 orthogonal array is used. A nonlinear regression model is measured and formulates the function based on the drilling parameters and fitness function. The result shows the minimization thrust force, delamination of hole drill diameter and feed rate more effect than the speed. TAN coated carbide twist drilled hole gives the result more percentage to reduce the hole wall delamination.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 891
Author(s):  
Numan Habib ◽  
Aamer Sharif ◽  
Aqib Hussain ◽  
Muhammad Aamir ◽  
Khaled Giasin ◽  
...  

Millions of holes are produced in many industries where efficient drilling is considered the key factor in their success. High-quality holes are possible with the proper selection of drilling process parameters, appropriate tools, and machine setup. This paper deals with the effects of drilling parameters such as spindle speed and feed rate on the chips analysis and the hole quality like surface roughness, hole size, circularity, and burr formation. Al7075-T6 alloy, commonly used in the aerospace industry, was used for the drilling process, and the dry drilling experiments were performed using high-speed steel drill bits. Results have shown that surface roughness decreased with the increase in spindle speed and increased with the increase in the feed rate. The hole size increased with the high spindle speed, whereas the impact of spindle speed on circularity error was found insignificant. Furthermore, short and segmented chips were achieved at a high feed rate and low spindle speed. The percentage contribution of each input parameter on the output drilling parameters was evaluated using analysis of variance (ANOVA).


2021 ◽  
Vol 5 (7) ◽  
pp. 189
Author(s):  
Muhammad Hafiz Hassan ◽  
Jamaluddin Abdullah ◽  
Gérald Franz ◽  
Chim Yi Shen ◽  
Reza Mahmoodian

Drilling two different materials in a layer, or stack-up, is being practiced widely in the aerospace industry to minimize critical dimension mismatch and error in the subsequent assembly process, but the compatibility of the drill to compensate the widely differing properties of composite is still a major challenge to the industry. In this paper, the effect of customized twist drill geometry and drilling parameters are being investigated based on the thrust force signature generated during the drilling of CFRP/Al7075-T6. Based on ANOVA, it is found that the maximum thrust force for both CFRP and Al7075-T6 are highly dependent on the feed rate. Through the analysis of maximum thrust force, supported by hole diameter error, hole surface roughness, and chip formation, it is found that the optimum tool parameters selection includes a helix angle of 30°, primary clearance angle of 6°, point angle of 130°, chisel edge angle of 30°, speed of 2600 rev/min and feed rate of 0.05 mm/rev. The optimum parameters obtained in this study are benchmarked against existing industry practice of the capability to produce higher hole quality and efficiency, which is set at 2600 rev/min for speed and 0.1 mm/rev for feed rate.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1783
Author(s):  
Hamza A. Al-Tameemi ◽  
Thamir Al-Dulaimi ◽  
Michael Oluwatobiloba Awe ◽  
Shubham Sharma ◽  
Danil Yurievich Pimenov ◽  
...  

Aluminum alloys are soft and have low melting temperatures; therefore, machining them often results in cut material fusing to the cutting tool due to heat and friction, and thus lowering the hole quality. A good practice is to use coated cutting tools to overcome such issues and maintain good hole quality. Therefore, the current study investigates the effect of cutting parameters (spindle speed and feed rate) and three types of cutting-tool coating (TiN/TiAlN, TiAlN, and TiN) on the surface finish, form, and dimensional tolerances of holes drilled in Al6061-T651 alloy. The study employed statistical design of experiments and ANOVA (analysis of variance) to evaluate the contribution of each of the input parameters on the measured hole-quality outputs (surface-roughness metrics Ra and Rz, hole size, circularity, perpendicularity, and cylindricity). The highest surface roughness occurred when using TiN-coated tools. All holes in this study were oversized regardless of the tool coating or cutting parameters used. TiN tools, which have a lower coating hardness, gave lower hole circularity at the entry and higher cylindricity, while TiN/TiAlN and TiAlN seemed to be more effective in reducing hole particularity when drilling at higher spindle speeds. Finally, optical microscopes revealed that a built-up edge and adhesions were most likely to form on TiN-coated tools due to TiN’s chemical affinity and low oxidation temperature compared to the TiN/TiAlN and TiAlN coatings.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Fang ◽  
Ze-Min Pan ◽  
Bing Han ◽  
Shao-Hua Fei ◽  
Guan-Hua Xu ◽  
...  

Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.


Author(s):  
Chaiya Dumkum ◽  
Pakin Jaritngam ◽  
Viboon Tangwarodomnukun

This article presents a comprehensive analysis of surface characteristics and drilling performance of uncoated and coated tungsten carbide drills. The single- and double-layer coatings of TiN, TiAlN and AlCrN were examined in terms of surface roughness, microhardness and crack resistance. In addition, drilling torque and thrust force were experimentally measured and compared to the developed models based on the drilling mechanics and drill geometries. Tool wear and hole surface roughness were also considered to assess the machining performance of different coated tools. The results revealed that all coated drills can offer better cut surface quality, 28% lower cutting loads and longer tool life than the uncoated drills. Although AlCrN was found to be the hardest coating material among the others, it caused large wear on the cutting edges and poor surface roughness of produced holes. The lowest torque and thrust force were achievable using TiN-coated drill, while the use of TiAlN coating resulted in the lowest surface roughness and smallest tool wear. Furthermore, the drilling torque and thrust force model developed in this study were found to correspond to the experimental measures with the average error of 8.4%. The findings of this work could facilitate the selection of coating materials to advance the machining performance.


Author(s):  
Daiyan Ahmed ◽  
Yingjian Xiao ◽  
Jeronimo de Moura ◽  
Stephen D. Butt

Abstract Optimum production from vein-type deposits requires the Narrow Vein Mining (NVM) process where excavation is accomplished by drilling larger diameter holes. To drill into the veins to successfully extract the ore deposits, a conventional rotary drilling rig is mounted on the ground. These operations are generally conducted by drilling a pilot hole in a narrow vein followed by a hole widening operation. Initially, a pilot hole is drilled for exploration purposes, to guide the larger diameter hole and to control the trajectory, and the next step in the excavation is progressed by hole widening operation. Drilling cutting properties, such as particle size distribution, volume, and shape may expose a significant drilling problem or may provide justification for performance enhancement decisions. In this study, a laboratory hole widening drilling process performance was evaluated by drilling cutting analysis. Drill-off Tests (DOT) were conducted in the Drilling Technology Laboratory (DTL) by dint of a Small Drilling Simulator (SDS) to generate the drilling parameters and to collect the cuttings. Different drilling operations were assessed based on Rate of Penetration (ROP), Weight on Bit (WOB), Rotation per Minute (RPM), Mechanical Specific Energy (MSE) and Drilling Efficiency (DE). A conducive schedule for achieving the objectives was developed, in addition to cuttings for further interpretation. A comprehensive study for the hole widening operation was conducted by involving intensive drilling cutting analysis, drilling parameters, and drilling performance leading to recommendations for full-scale drilling operations.


2019 ◽  
Vol 20 (6) ◽  
pp. 620 ◽  
Author(s):  
Farhad Najarian ◽  
Roozbeh Alipour ◽  
Abbas Razavykia ◽  
Ali Farokhi Nejad

Drilling is one of the most important machining processes which are currently carried out on fiber-reinforced composites. These composites possess a layered structure and different properties through their thickness. When drilling such structures, internal defects like delamination occur, caused by the drilling forces and their uneven distribution among the plies. The current study investigates the effect of magnetic field on drilling process of basalt/epoxy composite laminate in order to reduce delamination and the thrust force and improve some hole quality parameters i.e. roughness and cylindricity. A comparison is made between the responses for both normal drilling and drilling with applying a magnetic field. For this purpose, after finding the best combinations of normal drilling parameters, magnetic field is applied to the different configurations of solenoids on the setup of the drilling process. The results highlighted that using different magnet solenoids on the top and the bottom of drilling zone reduces the delamination and can obtain better roughness and cylindricity with lower damage.


Sign in / Sign up

Export Citation Format

Share Document