scholarly journals Learning Knowledge Using Frequent Subgraph Mining from Ontology Graph Data

2021 ◽  
Vol 11 (3) ◽  
pp. 932
Author(s):  
Kwangyon Lee ◽  
Haemin Jung ◽  
June Seok Hong ◽  
Wooju Kim

In many areas, vast amounts of information are rapidly accumulating in the form of ontology-based knowledge graphs, and the use of information in these forms of knowledge graphs is becoming increasingly important. This study proposes a novel method for efficiently learning frequent subgraphs (i.e., knowledge) from ontology-based graph data. An ontology-based large-scale graph is decomposed into small unit subgraphs, which are used as the unit to calculate the frequency of the subgraph. The frequent subgraphs are extracted through candidate generation and chunking processes. To verify the usefulness of the extracted frequent subgraphs, the methodology was applied to movie rating prediction. Using the frequent subgraphs as user profiles, the graph similarity between the rating graph and new item graph was calculated to predict the rating. The MovieLens dataset was used for the experiment, and a comparison showed that the proposed method outperformed other widely used recommendation methods. This study is meaningful in that it proposed an efficient method for extracting frequent subgraphs while maintaining semantic information and considering scalability in large-scale graphs. Furthermore, the proposed method can provide results that include semantic information to serve as a logical basis for rating prediction or recommendation, which existing methods are unable to provide.

Author(s):  
Hao Zhou ◽  
Tom Young ◽  
Minlie Huang ◽  
Haizhou Zhao ◽  
Jingfang Xu ◽  
...  

Commonsense knowledge is vital to many natural language processing tasks. In this paper, we present a novel open-domain conversation generation model to demonstrate how large-scale commonsense knowledge can facilitate language understanding and generation. Given a user post, the model retrieves relevant knowledge graphs from a knowledge base and then encodes the graphs with a static graph attention mechanism, which augments the semantic information of the post and thus supports better understanding of the post. Then, during word generation, the model attentively reads the retrieved knowledge graphs and the knowledge triples within each graph to facilitate better generation through a dynamic graph attention mechanism. This is the first attempt that uses large-scale commonsense knowledge in conversation generation. Furthermore, unlike existing models that use knowledge triples (entities) separately and independently, our model treats each knowledge graph as a whole, which encodes more structured, connected semantic information in the graphs. Experiments show that the proposed model can generate more appropriate and informative responses than state-of-the-art baselines. 


2021 ◽  
Author(s):  
Alexandros Vassiliades ◽  
Theodore Patkos ◽  
Vasilis Efthymiou ◽  
Antonis Bikakis ◽  
Nick Bassiliades ◽  
...  

Infusing autonomous artificial systems with knowledge about the physical world they inhabit is of utmost importance and a long-lasting goal in Artificial Intelligence (AI) research. Training systems with relevant data is a common approach; yet, it is not always feasible to find the data needed, especially since a big portion of this knowledge is commonsense. In this paper, we propose a novel method for extracting and evaluating relations between objects and actions from knowledge graphs, such as ConceptNet and WordNet. We present a complete methodology of locating, enriching, evaluating, cleaning and exposing knowledge from such resources, taking into consideration semantic similarity methods. One important aspect of our method is the flexibility in deciding how to deal with the noise that exists in the data. We compare our method with typical approaches found in the relevant literature, such as methods that exploit the topology or the semantic information in a knowledge graph, and embeddings. We test the performance of these methods on the Something-Something Dataset.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Iulia Lupan ◽  
Sergiu Chira ◽  
Maria Chiriac ◽  
Nicolae Palibroda ◽  
Octavian Popescu

Amino acids are obtained by bacterial fermentation, extraction from natural protein or enzymatic synthesis from specific substrates. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to enzymatic synthesis of amino acids. Aspartase (L-aspartate ammonia-lyase) catalyzes the reversible deamination of L-aspartic acid to yield fumaric acid and ammonia. It is one of the most important industrial enzymes used to produce L-aspartic acid on a large scale. Here we described a novel method for [15N] L-aspartic synthesis from fumarate and ammonia (15NH4Cl) using a recombinant aspartase.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2111
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Zhen-Hao Guo ◽  
Lei Wang ◽  
...  

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


2021 ◽  
Vol 22 (12) ◽  
pp. 6394
Author(s):  
Jacob Spinnen ◽  
Lennard K. Shopperly ◽  
Carsten Rendenbach ◽  
Anja A. Kühl ◽  
Ufuk Sentürk ◽  
...  

For in vitro modeling of human joints, osteochondral explants represent an acceptable compromise between conventional cell culture and animal models. However, the scarcity of native human joint tissue poses a challenge for experiments requiring high numbers of samples and makes the method rather unsuitable for toxicity analyses and dosing studies. To scale their application, we developed a novel method that allows the preparation of up to 100 explant cultures from a single human sample with a simple setup. Explants were cultured for 21 days, stimulated with TNF-α or TGF-β3, and analyzed for cell viability, gene expression and histological changes. Tissue cell viability remained stable at >90% for three weeks. Proteoglycan levels and gene expression of COL2A1, ACAN and COMP were maintained for 14 days before decreasing. TNF-α and TGF-β3 caused dose-dependent changes in cartilage marker gene expression as early as 7 days. Histologically, cultures under TNF-α stimulation showed a 32% reduction in proteoglycans, detachment of collagen fibers and cell swelling after 7 days. In conclusion, thin osteochondral slice cultures behaved analogously to conventional punch explants despite cell stress exerted during fabrication. In pharmacological testing, both the shorter diffusion distance and the lack of need for serum in the culture suggest a positive effect on sensitivity. The ease of fabrication and the scalability of the sample number make this manufacturing method a promising platform for large-scale preclinical testing in joint research.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 885
Author(s):  
Nicole Knoblauch ◽  
Peter Mechnich

Zirconium-Yttrium-co-doped ceria (Ce0.85Zr0.13Y0.02O1.99) compacts consisting of fibers with diameters in the range of 8–10 µm have been successfully prepared by direct infiltration of commercial YSZ fibers with a cerium oxide matrix and subsequent sintering. The resulting chemically homogeneous fiber-compacts are sinter-resistant up to 1923 K and retain a high porosity of around 58 vol% and a permeability of 1.6–3.3 × 10−10 m² at a pressure gradient of 100–500 kPa. The fiber-compacts show a high potential for the application in thermochemical redox cycling due its fast redox kinetics. The first evaluation of redox kinetics shows that the relaxation time of oxidation is five times faster than that of dense samples of the same composition. The improved gas exchange due to the high porosity also allows higher reduction rates, which enable higher hydrogen yields in thermochemical water-splitting redox cycles. The presented cost-effective fiber-compact preparation method is considered very promising for manufacturing large-scale functional components for solar-thermal high-temperature reactors.


Author(s):  
Trung-Kien Tran ◽  
Mohamed H. Gad-Elrab ◽  
Daria Stepanova ◽  
Evgeny Kharlamov ◽  
Jannik Strötgen

2021 ◽  
Vol 13 (2) ◽  
pp. 320
Author(s):  
José P. Granadeiro ◽  
João Belo ◽  
Mohamed Henriques ◽  
João Catalão ◽  
Teresa Catry

Intertidal areas provide key ecosystem services but are declining worldwide. Digital elevation models (DEMs) are important tools to monitor the evolution of such areas. In this study, we aim at (i) estimating the intertidal topography based on an established pixel-wise algorithm, from Sentinel-2 MultiSpectral Instrument scenes, (ii) implementing a set of procedures to improve the quality of such estimation, and (iii) estimating the exposure period of the intertidal area of the Bijagós Archipelago, Guinea-Bissau. We first propose a four-parameter logistic regression to estimate intertidal topography. Afterwards, we develop a novel method to estimate tide-stage lags in the area covered by a Sentinel-2 scene to correct for geographical bias in topographic estimation resulting from differences in water height within each image. Our method searches for the minimum differences in height estimates obtained from rising and ebbing tides separately, enabling the estimation of cotidal lines. Tidal-stage differences estimated closely matched those published by official authorities. We re-estimated pixel heights from which we produced a model of intertidal exposure period. We obtained a high correlation between predicted and in-situ measurements of exposure period. We highlight the importance of remote sensing to deliver large-scale intertidal DEM and tide-stage data, with relevance for coastal safety, ecology and biodiversity conservation.


2014 ◽  
Vol 5 ◽  
pp. 1203-1209 ◽  
Author(s):  
Hind Kadiri ◽  
Serguei Kostcheev ◽  
Daniel Turover ◽  
Rafael Salas-Montiel ◽  
Komla Nomenyo ◽  
...  

Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ) posts, on the self-organization of polystyrene beads (PS) dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching.


Sign in / Sign up

Export Citation Format

Share Document