scholarly journals Wheel Hub Defects Image Recognition Base on Zero-Shot Learning

2021 ◽  
Vol 11 (4) ◽  
pp. 1529
Author(s):  
Xiaohong Sun ◽  
Jinan Gu ◽  
Meimei Wang ◽  
Yanhua Meng ◽  
Huichao Shi

In the wheel hub industry, the quality control of the product surface determines the subsequent processing, which can be realized through the hub defect image recognition based on deep learning. Although the existing methods based on deep learning have reached the level of human beings, they rely on large-scale training sets, however, these models are completely unable to cope with the situation without samples. Therefore, in this paper, a generalized zero-shot learning framework for hub defect image recognition was built. First, a reverse mapping strategy was adopted to reduce the hubness problem, then a domain adaptation measure was employed to alleviate the projection domain shift problem, and finally, a scaling calibration strategy was used to avoid the recognition preference of seen defects. The proposed model was validated using two data sets, VOC2007 and the self-built hub defect data set, and the results showed that the method performed better than the current popular methods.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Douwe van der Wal ◽  
Iny Jhun ◽  
Israa Laklouk ◽  
Jeff Nirschl ◽  
Lara Richer ◽  
...  

AbstractBiology has become a prime area for the deployment of deep learning and artificial intelligence (AI), enabled largely by the massive data sets that the field can generate. Key to most AI tasks is the availability of a sufficiently large, labeled data set with which to train AI models. In the context of microscopy, it is easy to generate image data sets containing millions of cells and structures. However, it is challenging to obtain large-scale high-quality annotations for AI models. Here, we present HALS (Human-Augmenting Labeling System), a human-in-the-loop data labeling AI, which begins uninitialized and learns annotations from a human, in real-time. Using a multi-part AI composed of three deep learning models, HALS learns from just a few examples and immediately decreases the workload of the annotator, while increasing the quality of their annotations. Using a highly repetitive use-case—annotating cell types—and running experiments with seven pathologists—experts at the microscopic analysis of biological specimens—we demonstrate a manual work reduction of 90.60%, and an average data-quality boost of 4.34%, measured across four use-cases and two tissue stain types.



2020 ◽  
pp. 666-679 ◽  
Author(s):  
Xuhong Zhang ◽  
Toby C. Cornish ◽  
Lin Yang ◽  
Tellen D. Bennett ◽  
Debashis Ghosh ◽  
...  

PURPOSE We focus on the problem of scarcity of annotated training data for nucleus recognition in Ki-67 immunohistochemistry (IHC)–stained pancreatic neuroendocrine tumor (NET) images. We hypothesize that deep learning–based domain adaptation is helpful for nucleus recognition when image annotations are unavailable in target data sets. METHODS We considered 2 different institutional pancreatic NET data sets: one (ie, source) containing 38 cases with 114 annotated images and the other (ie, target) containing 72 cases with 20 annotated images. The gold standards were manually annotated by 1 pathologist. We developed a novel deep learning–based domain adaptation framework to count different types of nuclei (ie, immunopositive tumor, immunonegative tumor, nontumor nuclei). We compared the proposed method with several recent fully supervised deep learning models, such as fully convolutional network-8s (FCN-8s), U-Net, fully convolutional regression network (FCRN) A, FCRNB, and fully residual convolutional network (FRCN). We also evaluated the proposed method by learning with a mixture of converted source images and real target annotations. RESULTS Our method achieved an F1 score of 81.3% and 62.3% for nucleus detection and classification in the target data set, respectively. Our method outperformed FCN-8s (53.6% and 43.6% for nucleus detection and classification, respectively), U-Net (61.1% and 47.6%), FCRNA (63.4% and 55.8%), and FCRNB (68.2% and 60.6%) in terms of F1 score and was competitive with FRCN (81.7% and 70.7%). In addition, learning with a mixture of converted source images and only a small set of real target labels could further boost the performance. CONCLUSION This study demonstrates that deep learning–based domain adaptation is helpful for nucleus recognition in Ki-67 IHC stained images when target data annotations are not available. It would improve the applicability of deep learning models designed for downstream supervised learning tasks on different data sets.



Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 337
Author(s):  
Shaw-Hwa Lo ◽  
Yiqiao Yin

The field of explainable artificial intelligence (XAI) aims to build explainable and interpretable machine learning (or deep learning) methods without sacrificing prediction performance. Convolutional neural networks (CNNs) have been successful in making predictions, especially in image classification. These popular and well-documented successes use extremely deep CNNs such as VGG16, DenseNet121, and Xception. However, these well-known deep learning models use tens of millions of parameters based on a large number of pretrained filters that have been repurposed from previous data sets. Among these identified filters, a large portion contain no information yet remain as input features. Thus far, there is no effective method to omit these noisy features from a data set, and their existence negatively impacts prediction performance. In this paper, a novel interaction-based convolutional neural network (ICNN) is introduced that does not make assumptions about the relevance of local information. Instead, a model-free influence score (I-score) is proposed to directly extract the influential information from images to form important variable modules. This innovative technique replaces all pretrained filters found by trial-and-error with explainable, influential, and predictive variable sets (modules) determined by the I-score. In other words, future researchers need not rely on pretrained filters; the suggested algorithm identifies only the variables or pixels with high I-score values that are extremely predictive and important. The proposed method and algorithm were tested on real-world data set and a state-of-the-art prediction performance of 99.8% was achieved without sacrificing the explanatory power of the model. This proposed design can efficiently screen patients infected by COVID-19 before human diagnosis and can be a benchmark for addressing future XAI problems in large-scale data sets.



Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.



2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yahya Albalawi ◽  
Jim Buckley ◽  
Nikola S. Nikolov

AbstractThis paper presents a comprehensive evaluation of data pre-processing and word embedding techniques in the context of Arabic document classification in the domain of health-related communication on social media. We evaluate 26 text pre-processings applied to Arabic tweets within the process of training a classifier to identify health-related tweets. For this task we use the (traditional) machine learning classifiers KNN, SVM, Multinomial NB and Logistic Regression. Furthermore, we report experimental results with the deep learning architectures BLSTM and CNN for the same text classification problem. Since word embeddings are more typically used as the input layer in deep networks, in the deep learning experiments we evaluate several state-of-the-art pre-trained word embeddings with the same text pre-processing applied. To achieve these goals, we use two data sets: one for both training and testing, and another for testing the generality of our models only. Our results point to the conclusion that only four out of the 26 pre-processings improve the classification accuracy significantly. For the first data set of Arabic tweets, we found that Mazajak CBOW pre-trained word embeddings as the input to a BLSTM deep network led to the most accurate classifier with F1 score of 89.7%. For the second data set, Mazajak Skip-Gram pre-trained word embeddings as the input to BLSTM led to the most accurate model with F1 score of 75.2% and accuracy of 90.7% compared to F1 score of 90.8% achieved by Mazajak CBOW for the same architecture but with lower accuracy of 70.89%. Our results also show that the performance of the best of the traditional classifier we trained is comparable to the deep learning methods on the first dataset, but significantly worse on the second dataset.



Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .



2015 ◽  
Vol 8 (1) ◽  
pp. 421-434 ◽  
Author(s):  
M. P. Jensen ◽  
T. Toto ◽  
D. Troyan ◽  
P. E. Ciesielski ◽  
D. Holdridge ◽  
...  

Abstract. The Midlatitude Continental Convective Clouds Experiment (MC3E) took place during the spring of 2011 centered in north-central Oklahoma, USA. The main goal of this field campaign was to capture the dynamical and microphysical characteristics of precipitating convective systems in the US Central Plains. A major component of the campaign was a six-site radiosonde array designed to capture the large-scale variability of the atmospheric state with the intent of deriving model forcing data sets. Over the course of the 46-day MC3E campaign, a total of 1362 radiosondes were launched from the enhanced sonde network. This manuscript provides details on the instrumentation used as part of the sounding array, the data processing activities including quality checks and humidity bias corrections and an analysis of the impacts of bias correction and algorithm assumptions on the determination of convective levels and indices. It is found that corrections for known radiosonde humidity biases and assumptions regarding the characteristics of the surface convective parcel result in significant differences in the derived values of convective levels and indices in many soundings. In addition, the impact of including the humidity corrections and quality controls on the thermodynamic profiles that are used in the derivation of a large-scale model forcing data set are investigated. The results show a significant impact on the derived large-scale vertical velocity field illustrating the importance of addressing these humidity biases.



2020 ◽  
Vol 223 (2) ◽  
pp. 1378-1397
Author(s):  
Rosemary A Renaut ◽  
Jarom D Hogue ◽  
Saeed Vatankhah ◽  
Shuang Liu

SUMMARY We discuss the focusing inversion of potential field data for the recovery of sparse subsurface structures from surface measurement data on a uniform grid. For the uniform grid, the model sensitivity matrices have a block Toeplitz Toeplitz block structure for each block of columns related to a fixed depth layer of the subsurface. Then, all forward operations with the sensitivity matrix, or its transpose, are performed using the 2-D fast Fourier transform. Simulations are provided to show that the implementation of the focusing inversion algorithm using the fast Fourier transform is efficient, and that the algorithm can be realized on standard desktop computers with sufficient memory for storage of volumes up to size n ≈ 106. The linear systems of equations arising in the focusing inversion algorithm are solved using either Golub–Kahan bidiagonalization or randomized singular value decomposition algorithms. These two algorithms are contrasted for their efficiency when used to solve large-scale problems with respect to the sizes of the projected subspaces adopted for the solutions of the linear systems. The results confirm earlier studies that the randomized algorithms are to be preferred for the inversion of gravity data, and for data sets of size m it is sufficient to use projected spaces of size approximately m/8. For the inversion of magnetic data sets, we show that it is more efficient to use the Golub–Kahan bidiagonalization, and that it is again sufficient to use projected spaces of size approximately m/8. Simulations support the presented conclusions and are verified for the inversion of a magnetic data set obtained over the Wuskwatim Lake region in Manitoba, Canada.



Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Jose M. Castillo T. ◽  
Muhammad Arif ◽  
Martijn P. A. Starmans ◽  
Wiro J. Niessen ◽  
Chris H. Bangma ◽  
...  

The computer-aided analysis of prostate multiparametric MRI (mpMRI) could improve significant-prostate-cancer (PCa) detection. Various deep-learning- and radiomics-based methods for significant-PCa segmentation or classification have been reported in the literature. To be able to assess the generalizability of the performance of these methods, using various external data sets is crucial. While both deep-learning and radiomics approaches have been compared based on the same data set of one center, the comparison of the performances of both approaches on various data sets from different centers and different scanners is lacking. The goal of this study was to compare the performance of a deep-learning model with the performance of a radiomics model for the significant-PCa diagnosis of the cohorts of various patients. We included the data from two consecutive patient cohorts from our own center (n = 371 patients), and two external sets of which one was a publicly available patient cohort (n = 195 patients) and the other contained data from patients from two hospitals (n = 79 patients). Using multiparametric MRI (mpMRI), the radiologist tumor delineations and pathology reports were collected for all patients. During training, one of our patient cohorts (n = 271 patients) was used for both the deep-learning- and radiomics-model development, and the three remaining cohorts (n = 374 patients) were kept as unseen test sets. The performances of the models were assessed in terms of their area under the receiver-operating-characteristic curve (AUC). Whereas the internal cross-validation showed a higher AUC for the deep-learning approach, the radiomics model obtained AUCs of 0.88, 0.91 and 0.65 on the independent test sets compared to AUCs of 0.70, 0.73 and 0.44 for the deep-learning model. Our radiomics model that was based on delineated regions resulted in a more accurate tool for significant-PCa classification in the three unseen test sets when compared to a fully automated deep-learning model.



2009 ◽  
Vol 2 (1) ◽  
pp. 87-98 ◽  
Author(s):  
C. Lerot ◽  
M. Van Roozendael ◽  
J. van Geffen ◽  
J. van Gent ◽  
C. Fayt ◽  
...  

Abstract. Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2–0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.



Sign in / Sign up

Export Citation Format

Share Document