scholarly journals Solid-State Foaming Process Optimization for the Production of Shape Memory Polymer Composite Foam

2021 ◽  
Vol 11 (8) ◽  
pp. 3433
Author(s):  
Tamem Salah ◽  
Aiman Ziout

This research examined the optimization of the sustainable manufacturing process for polyester-based polymers/Fe3O4 nanocomposite foaming. The foamed structure was achieved by using a solid-state foaming process, where the prepared foams were tested in order to ascertain the optimum foaming parameters with the highest foaming ratios and the lowest foaming densities. The foaming parameters used in this research were the polymer type, nanoparticle percentage, packing pressure, holding time, foaming temperature, and foaming time. Two levels were selected for each factor, and a Taguchi plan was designed to determine the number of experiments required to reach a conclusion. Further characterization techniques, namely, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were used with the original samples to gain a better understanding of their structure and chemical composition. The data analysis showed that regardless of the parameters used, a high foaming ratio resulted in a low density. The introduction of nanoparticles (NPs) to the polymer structure resulted in higher foaming ratios. This increment in foaming ratio was noticeable on Corro-Coat PE Series 7® (CC) polymer more than Jotun Super Durable 2903® (JSD). The optimum parameters to prepare the highest foaming ratios were as follows: CC polymer with 2% NPs, compressed under a pressure of 10 K lbs. for a 3 min holding time and foamed at 290 °C for 15 min in the oven.

2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Alpi Zaidah

Pembuatan sampel barium stronsium titanat (BaxSr1-xTiO3) telah dilakukan dengan metode solid state reaction. Variasi komposisi mol Ba(x) untuk pembuatan sampel adalah x=0,4;0,3 dan 0,2. Sampel di-sintering pada suhu 1100oC dengan holding time 2 jam. Karakterisasi sampel dilakukan menggunakan peralatan X-Ray Diffraction (XRD) untuk mengetahui tingkat kekristalan dan ukuran kristal dari sampel. Sedangkan untuk mengetahui besarnya konstanta dielektrik menggunakan RLC-Meter.  Berdasarkan analisa dengan software GSAS, parameter kisi BaxSr1-xTiO3 yang sintering pada suhu 1100°C untuk x=0,4 adalah a=b=c=3,947 nm. Parameter kisi a=b=c=3,947 nm untuk x=0,3, dan parameter kisi a=b=c=3,939 nm untuk x=0,2. Nilai parameter kisi a=b=c menunjukkan struktur kristal berbentuk kubik. Ukuran kristal berturut-turut untuk x=0,4;0,3 dan 0,2 adalah 65 nm, 66 nm dan 69 nm. Ukuran kristal semakin besar seiring dengan meningkatnya penambahan Sr. Pengukuran konstanta dielektrik (K) dilakukan pada rentang frekuensi 1 kHz. Nilai K sampel dengan x=0,4;0,3 dan 0,2 masing-masing sebesar 265, 277 dan 307.


2010 ◽  
Vol 24 (09) ◽  
pp. 1137-1140 ◽  
Author(s):  
M. M. VERDIAN ◽  
M. SALEHI ◽  
K. RAEISSI

Amorphous/nanocrystalline 50 Ni –50 Ti powders were synthesized from elemental Ti and Ni powders by solid state synthesis utilizing low energy mechanical alloying with times up to 100 h. The produced powders were investigated by X-ray diffraction and differential scanning calorimetry to study phase transformations that occurred during heating in the calorimeter. It was found that at the first stage of the heating process, a disordered NiTi phase was formed at temperature of about 400°C. Further investigations indicated that this phase transformed into the Ni 3 Ti and Ti 2 Ni intermetallic compounds after heating at a temperature of about 800°C.


2019 ◽  
Vol 75 (6) ◽  
pp. 793-805
Author(s):  
Dorota Pogoda ◽  
Jan Janczak ◽  
Sylwia Pawlak ◽  
Michael Zaworotko ◽  
Veneta Videnova-Adrabinska

Kynurenic acid (KYN; systematic name: 4-hydroxyquinoline-2-carboxylic acid, C10H7NO3) displays a therapeutic effect in the treatment of some neurological diseases and is used as a broad-spectrum neuroprotective agent. However, it is understudied with respect to its solid-state chemistry and only one crystal form (α-KYN·H2O) has been reported up to now. Therefore, an attempt to synthesize alternative solid-state forms of KYN was undertaken and six new species were obtained: five solvates and one salt. One of them is a new polymorph, β-KYN·H2O, of the already known KYN monohydrate. All crystal species were further studied by single-crystal and powder X-ray diffraction, thermal and spectroscopic methods. In addition to the above methods, differential scanning calorimetry (DSC), in-situ variable-temperature powder X-ray diffraction and Raman microscopy were applied to characterize the phase behaviour of the new forms. All the compounds display a zwitterionic form of KYN and two different enol–keto tautomers are observed depending on the crystallization solvent used.


1988 ◽  
Vol 123 ◽  
Author(s):  
J. E. Smeaton ◽  
George Burns

AbstractThe Tomb of Nefertari, no. 66, Valley of the Queens, is an internationally known monument of historic and artistic importance; it is considere d one of the most beautiful of the Royal Egyptian tombs. The fragility of its plaster along with its ubiquitous sodium chloride crystals and microcrystals have complicated its conservation and restoration. In order to determine the optimum pathway for its conservation, the physicochemical processes which occur now in this Tomb must be well understood. To improve this understanding, samples of plaster taken from the Tomb have been analyzed using Differential Scanning Calorimetry and X-ray Diffraction and have been shown to be fully dehydrated; previous findings suggest that this is not the case in all contemporary Royal tombs. Although we are not aware of any kinetic study of gypsum dehydration in the solid state, the presence of anhydrite in the Tomb of Nefertari suggests that the CaSO4 ·2H2O → CaSO4 + 2H2O reaction is catalyzed. It is reasoned that finely-dispersed sodium chloride crystals act as effective catalysts in this reaction.


1998 ◽  
Vol 23 (0) ◽  
pp. 91-98 ◽  
Author(s):  
Ana Glauce ZAINA CHIARETTO ◽  
Marco Aurélio da Silva CARVALHO FILHO ◽  
Nedja Suely FERNANDES ◽  
Massao IONASHIRO

Solid state compounds of general formula ML2.nH2O [where M is Mg, Ca, Sr or Ba; L is cinnamate (C6H5 -CH=CH-COO-) and n = 2, 4, 0.8, 3 respectively], have been synthetized. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal stability and thermal decomposition of these compounds.


2020 ◽  
Vol 16 ◽  
Author(s):  
Ilma Nugrahani

: Every "entity" or compound has physical and chemical properties as references for the synthesis and determination of the entity's structure. Thermodynamically, solid-state is the most stable matter in the universe and to be the ideal form in structure elucidation of pharmaceutical. The dry treatments become popular, such as mechanochemistry, microwave heating, and the using of deep eutectic agent. These techniques are viewed as the futuristic methods for reducing environmental damage, in line with "green pharmacy" concept. On the other hand, solid-state analysis methods from the simplest to the most sophisticated one have been used in the long decades, but most are for qualitative purposes. Recently many reports have proven that solid-state analysis instruments are reliable and prospective for implementing in the quantitative measurement. Infrared spectroscopy, powder x-ray diffraction, and differential scanning calorimetry have been employed in various kinetics and content determination studies. A revolutionary method developed for structural elucidation is single-crystal diffraction, which is capable of rapidly and accurately determining a three-dimensional chemical structure. Hereby it shown that the accurate, precise, economical, ease, rapid-speed, and reliability of solid-state analysis method are eco-benefits by reducing the reagent, catalyst, and organic solvent.


1989 ◽  
Vol 170 ◽  
Author(s):  
B. E. White ◽  
M. E. Patt ◽  
E. J. Cotts

AbstractDifferential scanning calorimetry and x-ray diffraction analysis were utilized to monitor solid state reactions in mechanically deformed Ni/Ti multilayered composites. Solid state reactions at temperatures less than = 650 K result in the formation of a highly disordered phase which is apparently amorphous.The subsequent nucleation and growth at higher temperatures of intermetallic compounds from the amorphous phase is examined. The relatively small thickness of amorphous material (less than 100 Å) which can be grown by solid state reaction in our Ni/Ti samples, combined with the indication that a disordered interface such as that produced by mechanical deformation facilitates these reactions in the Ni-Ti system, may provide some explanation for the relatively high degree of success experienced in the production of amorphous Ni- Ti by means of ball milling. Comparisons are made to results obtained in the Ni-Zr system.


1995 ◽  
Vol 398 ◽  
Author(s):  
R.J. Kasica ◽  
E.J. Cotts ◽  
R.G. Ahrens

ABSTRACTMultilayered difiiision couples consisting of alternating layers of titanium (Ti) and amorphous silicon (a-Si) have been fabricated using sputter deposition with a range of modulation lengths corresponding to an average composition of Ti33 Si67. We have used differential scanning calorimetry to measure the enthalpy evolved during the solid state reaction a-Si + Ti → C49-TiSi2 and have characterized the phases formed using x-ray diffraction analysis. An average measured enthalpy of formation, ΔΗ was found to be ΔΗ = -58 + 9 kJ/g atom for thin film samples. Using scanning and isothermal calorimetry measurements, we have also characterized the kinetics involved during the initial intermixing stage.


2015 ◽  
Vol 44 (42) ◽  
pp. 18447-18458 ◽  
Author(s):  
M. Węcławik ◽  
P. Szklarz ◽  
W. Medycki ◽  
R. Janicki ◽  
A. Piecha-Bisiorek ◽  
...  

Dipyrazolium iodide triiodide, [C3N2H5+]2[I−·I3−], has been synthesized and studied by means of X-ray diffraction, differential scanning calorimetry, dielectric measurements, and UV-Vis spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document