scholarly journals Experimental Analysis of Continuous Beams Made of Self-Compacting Concrete (Scc) Strengthened with Fiber Reinforced Polymer (Frp) Materials

2021 ◽  
Vol 11 (9) ◽  
pp. 4032
Author(s):  
Žarko Petrović ◽  
Bojan Milošević ◽  
Slobodan Ranković ◽  
Biljana Mladenović ◽  
Dragan Zlatkov ◽  
...  

Strengthening of concrete structures is applied as a solution for various deterioration problems in civil engineering practice. This also refers to the structures made of self-compacting concrete (SCC), which is increasingly in use, but there is a lack of research in this field. This paper presents an experimental analysis of flexural behavior of reinforced concrete (RC) continuous beams made of SCC, strengthened with fiber reinforced polymer (FRP) materials (glass (GFRP) and carbon (CFRP) bars, CFRP laminates), by the use of near surface mounted (NSM) and externally bonded (EB) methods. Six two-span continuous beams of a total length of 3200 mm, with the span between supports of 1500 mm and 120/200 mm cross section, were subjected to short-term load and tested. The displacements of beams and the strains in concrete, steel reinforcement, FRP bars and tapes were recorded until failure under a monotonically increasing load. The ultimate load capacities of the strengthened beams were enhanced by 22% to 82% compared to the unstrengthened control beam. The ductility of beams strengthened with GFRP bars was satisfactory, while the ductility of beams strengthened with CFRP bars and tapes was very small, so the failure modes of these beams were brittle.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mervin Ealiyas Mathews ◽  
Anand N ◽  
Diana Andrushia A ◽  
Tattukolla Kiran ◽  
Khalifa Al-Jabri

PurposeBuilding elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is widely used in construction due to its ability to flow and pass through congested reinforcement and fill the required areas easily without compaction. The aim of the research work is to examine the flexural behavior of SCC subjected to elevated temperature. This research work examines the effect of natural air cooling (AC) and water cooling (WC) on flexural behavior of M20, M30, M40 and M50 grade fire-affected retro-fitted SCC. The results of the investigation will enable the designers to choose the appropriate repair technique for improving the service life of structures.Design/methodology/approachIn this study, an attempt has been made to evaluate the flexural behavior of fire exposed reinforced SCC beams retrofitted with laminates of carbon fiber reinforced polymer (CFRP), basalt fiber reinforced polymer (BFRP) and glass fiber reinforced polymer (GFRP). Beam specimens were cast with M20, M30, M40 and M50 grades of SCC and heated to 925ºC using an electrical furnace for 60 min duration following ISO 834 standard fire curve. The heated SCC beams were cooled by either natural air or water spraying.FindingsThe reduction in the ultimate load carrying capacity of heated beams was about 42% and 55% for M50 grade specimens that were cooled by air and water, respectively, in comparison with the reference specimens. The increase in the ultimate load was 54%, 38% and 27% for the specimens retrofitted with CFRP, BFRP and GFRP, respectively, compared with the fire-affected specimens cooled by natural air. Water-cooled specimens had shown higher level of damage than the air-cooled specimens. The specimens wrapped with carbon fiber could able to improve the flexural strength than basalt and glass fiber wrapping.Originality/valueSCC, being a high performance concrete, is essential to evaluate the performance under fire conditions. This research work provides the flexural behavior and physical characteristics of SCC subjected to elevated temperature as per ISO rate of heating. In addition attempt has been made to enhance the flexural strength of fire-exposed SCC with wrapping using different fibers. The experimental data will enable the engineers to choose the appropriate material for retrofitting.


2012 ◽  
Vol 256-259 ◽  
pp. 1012-1016
Author(s):  
Gu Sheng Tong ◽  
Yong Xiang Wang ◽  
Qiu Lan Wu ◽  
Yong Sheng Liu

In order to investigate the strengthen effect of different embedment lengths of the NSM strip on different damage levels. A series of tests were conducted on damaged reinforced concrete (RC) beams in flexure strengthened with near surface mounted (NSM) carbon- fiber-reinforced polymer (CFRP) strips, and initial cracking load, ultimate capacity, loading-deflection curves, and failure modes are examined and analyzed in the paper. The results showed that not only the initial cracking loads and ultimate capacities of the beams are significantly increased,but also the flexural stiffness of the beams in the yield and ultimate behavior stages are improved by using NSM-CFRP strips. The strengthen effect on lower damage level RC beams has no obvious difference with that on non-damaged RC beams. Anchoring of the strip end can increase the ultimate load capacities and decrease the ductility of RC beams. Debonding was found to be the primary failure mode in all cases.


2015 ◽  
Vol 752-753 ◽  
pp. 610-616 ◽  
Author(s):  
Norhafizah Salleh ◽  
Abdul Rahman Mohd Sam ◽  
Jamaludin Mohd Yatim

There has been much research conducted on the current performance of Fiber Reinforced Polymer (FRP) as reinforcement. It was due to FRP easier to maintain than steel during construction because of less weight. Laboratory works on the flexural behavior of concrete beams that with GFRP and CFRP use as a plate strengthening for the beam size 2800 x 200 x 250 millimeter. study of the pattern of cracking and failure modes of the beam will be compared between the ten types of beams consisting of steel reinforced beams , beam-reinforced GFRP and GFRP reinforced beams strengthened with CFRP with different lengths. Comparing between the beam bending performance was examined through the ultimate load, cracking and failure modes.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wenchao Li ◽  
Min Zhou ◽  
Fusheng Liu ◽  
Yuzhao Jiao ◽  
Qingfeng Wu

Fiber-reinforced polymer (FRP) bar-reinforced unsaturated polyester resin concrete (UPC) can solve the problem of rebar corrosion in ordinary reinforced concrete members. However, it has not been widely used in engineering practice because there have been few studies conducted on the bond behaviors of FRP bar and UPC, and the interaction mechanisms between FRP bar and UPC have not been well understood. A series of pull-out tests are conducted on FRP bar-UPC specimens to study the bond behaviors between these two materials. Parametric studies are also carried out to investigate the effects of FRP bar diameter, fiber type, type of surface treatment, concrete cover thickness, and interfacial bond length between the two. Three failure modes of the specimens are observed from pull-out tests, i.e., FRP bar pull-out, tensile failure of FRP bar, and UPC split. A new constitutive model is, therefore, proposed to predict the bond stress of FRP bar and UPC in the residual stage, and the proposed model is finally verified by test data reported in this study.


2006 ◽  
Vol 324-325 ◽  
pp. 995-998
Author(s):  
Cheol Woo Park ◽  
Jong Sung Sim

Even though the application of fiber reinforced polymer (FRP) as a concrete reinforcement becomes more common with various advantages, one of the inherent shortcomings may include its brittleness and on-site fabrication and handling. Therefore, the shape of FRP products has been limited only to a straight bar or sheet type. This study suggests a new technique to use glass fiber reinforced polymer (GFRP) bars for the shear reinforcement in concrete beams, and investigates its applicability. The developed GFRP stirrup was used in the concrete instead of ordinary steel stirrups. The experimental program herein evaluates the effectiveness of the GFRP stirrups with respect to different shear reinforcing ratios under three different shear span-to-depth testing schemes. At the same shear reinforcing ratio, the ultimate loads of the beams were similar regardless the shear reinforcing materials. Once a major crack occurs in concrete, however, the failure modes seemed to be relatively brittle with GFRP stirrups. From the measured strains on the surface of concrete, the shear stresses sustained by the stirrups were calculated and the efficiency of the GFRP stirrups was shown to be 91% to 106% depending on the shear span-to-depth ratio.


Sign in / Sign up

Export Citation Format

Share Document