scholarly journals Numerical Study of the Hydrodynamic Characteristics Comparison between a Ducted Propeller and a Rim-Driven Thruster

2021 ◽  
Vol 11 (11) ◽  
pp. 4919
Author(s):  
Bao Liu ◽  
Maarten Vanierschot

The Rim-Driven Thruster (RDT) is an extraordinary innovation in marine propulsion applications. The structure of an RDT resembles a Ducted Propeller (DP), as both contain several propeller blades and a duct shroud. However, unlike the DP, there is no tip clearance in the RDT as the propeller is directly connected to the rim. Instead, a gap clearance exists in the RDT between the rim and the duct. The distinctive difference in structure between the DP and the RDT causes significant discrepancy in the performance and flow features. The present work compares the hydrodynamic performance of a DP and an RDT by means of Computational Fluid Dynamics (CFD). Reynolds-Averaged Navier–Stokes (RANS) equations are solved in combination with an SST k-ω turbulence model. Validation and verification of the CFD model is conducted to ensure the numerical accuracy. Steady-state simulations are carried out for a wide range of advance coefficients with the Moving Reference Frame (MRF) approach. The results show that the gap flow in the RDT plays an important role in affecting the performance. Compared to the DP, the RDT produces less thrust on the propeller and duct, and, because of the existence of the rim, the overall efficiency of the RDT is significantly lower than the one of the ducted propeller.

2017 ◽  
Vol 10 (20) ◽  
pp. 31
Author(s):  
Hassan Ghassemi ◽  
Sohrab Majdfar ◽  
Hamid Forouzan

The purpose of this paper is to calculate the hydrodynamic performance of a ducted propeller (hereafter Duct_P) at oblique flows. e numerical code based on the solution of the Reynolds-averaged Navier– Stokes equations (RANSE) applies to the Kaplan propeller with 19A duct. e shear-stress transport (SST)-k-ω turbulence model is used for the present results. Open-water hydrodynamic results are compared with experimental data showing a relatively acceptable agreement. Two oblique flow angles selected to analyze in this paper are 10 and 20 degrees. Numerical results of the pressure distribution and hydrodynamic performance are presented and discussed. 


Author(s):  
José Ramón Serrano ◽  
Roberto Navarro ◽  
Luis Miguel García-Cuevas ◽  
Lukas Benjamin Inhestern

Tip leakage loss characterization and modeling plays an important role in small size radial turbine research. The momentum of the flow passing through the tip gap is highly related with the tip leakage losses. The ratio of fluid momentum driven by the pressure gradient between suction side and pressure side and the fluid momentum caused by the shroud friction has been widely used to analyze and to compare different sized tip clearances. However, the commonly used number for building this momentum ratio lacks some variables, as the blade tip geometry data and the viscosity of the used fluid. To allow the comparison between different sized turbocharger turbine tip gaps, work has been put into finding a consistent characterization of radial tip clearance flow. Therefore, a non-dimensional number has been derived from the Navier Stokes Equation. This number can be calculated like the original ratio over the chord length. Using the results of wide range CFD data, the novel tip leakage number has been compared with the traditional and widely used ratio. Furthermore, the novel tip leakage number can be separated into three different non-dimensional factors. First, a factor dependent on the radial dimensions of the tip gap has been found. Second, a factor defined by the viscosity, the blade loading, and the tip width has been identified. Finally, a factor that defines the coupling between both flow phenomena. These factors can further be used to filter the tip gap flow, obtained by CFD, with the influence of friction driven and pressure driven momentum flow.


Author(s):  
N. Lymberopoulos ◽  
K. Giannakoglou ◽  
I. Nikolaou ◽  
K. D. Papailiou ◽  
A. Tourlidakis ◽  
...  

Mechanical constraints dictate the existence of tip clearances in rotating cascades, resulting to a flow leakage through this clearance which considerably influences the efficiency and range of operation of the machine. Three-dimensional Navier-Stokes solvers are often used for the numerical study of compressor and turbine stages with tip-clearance. The quality of numerical predictions depends strongly on how accurately the blade tip region is modelled; in this respect the accurate modelling of tip region was one of the main goals of this work. In the present paper, a 3-D Navier-Stokes solver is suitably adapted so that the flat tip surface of a blade and its sharp edges could be accurately modelled, in order to improve the precision of the calculation in the tip region. The adapted code solves the fully elliptic, steady, Navier-Stokes equations through a space-marching algorithm and a pressure correction technique; the H-type topology is retained, even in cases with thick leading edges where a special treatment is introduced herein. The analysis is applied to two different cases, a linear cascade and a compressor rotor, and comparisons with experimental data are provided.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882310 ◽  
Author(s):  
Xiao Yang ◽  
Yong Yin ◽  
Jing-Jing Lian

The semi-spade rudder and KP458 propeller of the KVLCC2 (KRISO very large crude carrier) model tanker are adopted by ITTC maneuvering technical committee in the comparative study of ship maneuverability. The incompressible viscous flow around semi-spade rudder and KP458 propeller is investigated using Reynolds-averaged Navier–Stokes equations, the computational grids are generated using ICEM software, and finite volume method is employed to discretize the governing equations. Combined with turbulence model, the hydrodynamic performance of semi-spade rudder is analyzed at different rudder angles, and the result provides a reference for the estimation of the hydrodynamic characteristics of semi-spade rudder. The multi-reference framework method is employed to carry out the numerical simulation of the flow field around the propeller. The thrust and torque of propeller under different turbulence models are calculated in the simulation. The thrust coefficient curve, torque coefficient curve, and efficiency curve are present. The pressure distributions of the pressure side and suction side of propeller blades are studied at different advance coefficient. Based on the study of the hydrodynamic performance of the semi-spade rudder and propeller, the propeller–rudder interaction is simulated and analyzed at different advance coefficient.


2014 ◽  
Author(s):  
Ping Lu ◽  
Sue Wang

In the present study, the hydrodynamic performance of a typical North Sea dynamic positioning (DP) shuttle tanker consisting of two main propellers, two rudders, and two bow tunnel thrusters is investigated by solving Reynolds-averaged Navier-Stokes (RANS) equations for a viscous flow. The focus of the numerical simulation is on the performance of propellers/rudders and bow tunnel thrusters considering the hydrodynamic interactions between propellers/thrusters, hull and current. The numerical model includes hull, propeller, rudder, bow tunnel thruster and flow field. First, an analysis of a propeller performance in open water is carried out by calculating the coefficient of thrust, torque, and propeller efficiency. Then, rudders are included in the analysis for the assessment of propeller/rudder performance. The pressure distribution on rudders, rudder’s drag and lift coefficients for different angles of attack, and flow field around the rudder are obtained. The interaction effects between propeller, rudder, ship hull, as well as bow tunnel thruster and ship hull are analyzed by adding detailed ship hull geometry in the computational domain. The tunnel thruster efficiency reduction due to current and ventilation is also analyzed. The presence of current leads to significant changes in the flow velocity and distribution of pressure in the tunnel outflow area as well as significant deflection of the propeller jet emitting from the tunnel. A comparison between Computational Fluid Dynamics (CFD) and model test results of flow features near the tunnel area with various current speeds is presented.


2019 ◽  
Author(s):  
Danio Joe ◽  
Vijit Misra ◽  
R Vijayakumar

The impact of increased Underwater Radiated Noise (URN) over the past two decades on marine mammals has resulted in the pressing requirement to reduce it. Shipping contributes immensely to the URN. Propeller noise is a major source of URN. The reduction in Propeller noise can hence significantly help in the reduction of URN. With the sole objective of improving the hydrodynamic performance of propellers ways to prevent cavitation are being developed. However, the reduction of non cavitating noise produced by the propeller would still remain a challenge. The change in the propeller geometry can modify the acoustic characteristics. In this present study, effect of modifying the tip of DTMB4119 propeller on the acoustic and hydrodynamic characteristics is presented. The change in the flow pattern at the tip due to introduction of tip rake is also discussed. The SPL has been calculated by using the two-step Ffowcs William and Hawkings (FW-H) equations from the pressure distribution at various points around the propeller. SPL at various points in the downstream and propeller disk plane are numerically predicted and discussed.


Author(s):  
Yu-Tai Lee ◽  
Chunill Hah ◽  
James Loellbach

This paper summarizes a numerical investigation of the fundamental structure of the rotor tip-clearance vortex and its interaction with a passage trailing-edge vortex in a single-stage stator-rotor pump. The flow field of a highly-loaded rotor measured in a high Reynolds number pump facility (HIREP) is used for comparison. The numerical solution was obtained by solving the three-dimensional Reynolds averaged Navier-Stokes equations. The calculated results are visualized in order to understand the details of the tip-vortex structure. The study shows that the tip geometry should be accurately represented to predict the tip-vortex structure correctly.


Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Ron Ryan ◽  
Lee Hedd

State of the art CFD capabilities has enabled the accurate prediction of forces and moments on the propeller as well as on the pod-strut body due to small to moderate azimuthing angles. The capability of CFD to predict the hydrodynamics at extreme azimuthing angles is yet to be demonstrated. The aim of this research is to develop a simulation capability to capture most of the dynamics of podded propulsion systems in regular to extreme operating conditions. The numerical methodologies to evaluate the hydrodynamic characteristics of podded propulsors in puller configurations in extremely oblique inflow and highly loaded condition in open water and the associated results are presented in this paper. A numerical study is carried out to predict the hydrodynamic forces of a podded propulsor unit in various extreme static azimuthing conditions. An unsteady Reynolds-Averaged Navier Stokes (RANS) solver is used to predict the propulsive performance of the podded propulsor system in puller configuration using both steady and unsteady state solutions. To obtain insight into the reliability and accuracy of the results, grid dependency studies are conducted for a podded propulsor in straight-ahead condition. RANS solver simulation technique is first validated against measurements of a puller podded propulsor in straight ahead condition for multiple loading scenarios. The propeller thrust and torque as well as the forces and moments of the pod unit in the three coordinate directions in straight-ahead condition and at static azimuthing angles in the range of −180° to 180° at advance coefficient of 0.20 are then compared with that of the measurements. Additionally, the velocity and pressure distribution on and around the pod-strut-propeller bodies are presented as derived from the RANS predictions. Analysis demonstrates that the RANS solver can predict the performance coefficients of the podded propulsor in extreme azimuthing and in the highly loaded conditions within the same level of accuracy of the same order of magnitude of the experimental results.


2020 ◽  
Author(s):  
Kenshiro Takahashi ◽  
Prasanta K. Sahoo

Abstract This study was built upon previous works conducted by the authors in a series of numerical studies on submarine hydrodynamics and is aimed at enhancing the accuracy of computational fluid dynamics (CFD) application processes, which estimate the hydrodynamic performance of underwater vehicles for steady translation conditions in the horizontal and vertical planes. In an earlier work, the computed straight-ahead resistance of a submarine agreed with those of experiments within a comparison error of 2%. However, a maximum comparison error of approximately 20% was obtained for sway force under a steady translation condition. The Defense Advanced Research Projects Agency (DARPA) Suboff submarine model was adopted as a benchmark, and the computational modeling was based on the Reynolds-averaged Navier–Stokes (RANS) turbulence model for steady simulations. The curvature correction approach was tested to improve the computation of circumferential flow around the cylindrical hull, in particular. The dominant maneuvering coefficients were calculated using the computed forces and moments as a function of the yaw and pitch angles along with simplified equations of motion by fitting a curve to the plots. The hydrodynamic forces and moments exerted on the stern plane were individually computed using a locally refined mesh around the tail section. It was confirmed that the curvature correction approach improved the computational accuracy for the steady translation conditions, and general trends were captured over the tested yaw and pitch angles. However, some data points had notable comparison errors. Some of the estimated maneuvering coefficients agreed well between the CFD simulation and the experiments, whereas others had considerable comparison errors. The individually computed forces and moments exerted on the stern plane that had attack angles were inconsistent with those obtained in experiments. Those comparison errors may have been amplified by the complexity of configuration and arisen from differences in the experiments, such as the presence of a free surface and supporting strut to mount the hull to a carriage, and, perhaps, the geometrical differences owing to machining accuracy. The investigation of flow field at the propeller plane revealed that the wake distributions inside the nozzle were significantly affected by the angled stern planes; the reduced velocity area was expanded and shifted. Furthermore, harmonic analysis of the wake fraction was conducted, and several primary nth harmonics were observed, which were associated with the struts and stern planes. This result suggests the risk of higher noise levels associated with the number of blades.


Author(s):  
Arezou Jafari ◽  
S. Mohammad Mousavi

Numerical study of flow through random packing of non-overlapping spheres in a cylindrical geometry is investigated. Dimensionless pressure drop has been studied for a fluid through the porous media at moderate Reynolds numbers (based on pore permeability and interstitial fluid velocity), and numerical solution of Navier-Stokes equations in three dimensional porous packed bed illustrated in excellent agreement with those reported by Macdonald [1979] in the range of Reynolds number studied. The results compare to the previous work (Soleymani et al., 2002) show more accurate conclusion because the problem of channeling in a duct geometry. By injection of solute into the system, the dispersivity over a wide range of flow rate has been investigated. It is shown that the lateral fluid dispersion coefficients can be calculated by comparing the concentration profiles of solute obtained by numerical simulations and those derived analytically by solving the macroscopic dispersion equation for the present geometry.


Sign in / Sign up

Export Citation Format

Share Document