scholarly journals Evaluation of the Long-Term Performances of SMA-13 Containing Different Fibers

2021 ◽  
Vol 11 (11) ◽  
pp. 5145
Author(s):  
Bangwei Wu ◽  
Xing Wu ◽  
Peng Xiao ◽  
Chuangchuang Chen ◽  
Ji Xia ◽  
...  

To clarify the influence of fiber type on the long-term performance of stone mastic asphalt (SMA), this paper used basalt fiber (BF) and lignin fiber (LF) to modify SMA-13 (SMA with aggregate nominal maximum particle size of 13.2 mm) asphalt mixture. The pavement performances (high-temperature performance, cracking resistance at low and medium temperature, and water stability) of the two kinds of fiber-reinforced SMA-13 were checked under different aging degrees (unaged, short-term aged and long-term aged), scanning electron microscope (SEM) test was conducted to explain the strengthening mechanism of the fibers. Fourier transform infrared spectrometry (FTIR) was used to analyze the changes in the chemical composition of asphalt after aging. The results of the wheel tracking test and uniaxial penetration test showed that the high-temperature performance of the BFSMA-13 (defined as the SMA-13 containing BF) is better than that of the LFSMA-13 (defined as the SMA-13 containing LF) at different aging degrees. The high-temperature performance of BFSMA-13 increases with the increase of the aging degree, while the aging process decreases the high-temperature property of LFSMA-13. The results of the three-point bending test and semi-circular bending (SCB) proved that BFSMA-13 is more capable of deformation and less prone to cracking at low and medium temperatures. The results of the immersion Marshal test indicated that BF can better improve the strength and the water stability of the SMA-13 mixture than LF. The SEM images showed that basalt fibers form a solid three-dimensional network structure in the mixture which could contribute to the strengthening of the mixture. The results of infrared spectroscopy analysis showed that styrene–butadiene–styrene (SBS) degrades during asphalt mixture aging, and that the chemical composition of asphalt changes more after aging in LFSMA-13 than in BFSMA-13. The conclusions of this study help toward further understanding of the performance changes of the SMA-13 mixture during its service life and to guide the selection of fiber additives for SMA-13 mixtures.

2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


2015 ◽  
Vol 713-715 ◽  
pp. 2765-2768
Author(s):  
Ye Mao Zhang ◽  
Kun Wang

To research the grading applicability of Lucobit modifier and make it adapt to China's basic national conditions very well, the gradations of SUP-20 was selected to research mix design and pavement performance in the text. First, the mix design of SUP-20 without Lucobit is researched. Then the performance of SUP-20 is verified including the high temperature, low temperature and water stability performance of common asphalt mixture. At last the performance comparison between SUP-20 asphalt mixture with 7% Lucobit and without is carried out. Results show that the performance of SUP-20 asphalt mixture with 7% Lucobit and without can all meet the requirement. Compared with the performance of SUP-20 asphalt mixture without Lucobit, the low temperature and water stability performance with Lucobit have a little improvement and the high temperature performance improves a lot. So Lucobit modifier can greatly improve the high temperature performance of SUP-20 asphalt mixture.


2015 ◽  
Vol 1095 ◽  
pp. 276-279
Author(s):  
Xin Feng Zhou ◽  
Xi Juan Xu

Through the research of different separation and regeneration aggregate content, different types of regenerative high temperature stability, low temperature performance and water stability performance of asphalt mixture comprehensively, the results show that: with the increase of recycled aggregate content, improves the high temperature properties of recycled asphalt mixture, low temperature performance and water stability are reduced, the admixture when regeneration aggregate is 20 ~ 25%, recycled asphalt mixture has good road performance. Key words: road engineering;waste asphalt mixture;separation and regeneration aggregate;road performance


2011 ◽  
Vol 284-286 ◽  
pp. 1871-1876
Author(s):  
Yu Hua Peng ◽  
Hui Xing Liu ◽  
Lin Kai Shi

In order to study the performance of asphalt mixture with PR.S, Marshall test and rutting, low temperature bending, water stability test were done. The results indicated that the additive PR.S played an important role in improving high-temperature anti-rutting performance of asphalt mixture because of the cementation, reinforcement, inter-lock and adsorption function. With the amount of PR.S increasing, high-temperature performance of asphalt mixture increased gradually and low-temperature performance declined a little. In order to decide the appropriate amount of the additive PR.S, the low-temperature anti-cracking performance should be mainly considered when asphalt mixture was designed. The other performance of asphalt mixture with the amount of 0.45% PR.S could also meet the requirements of the specification. Considering its great contribution to anti-rutting, PR.S asphalt mixture was more properly adopted in the middle layer of asphalt pavement.


2012 ◽  
Vol 598 ◽  
pp. 655-658 ◽  
Author(s):  
Xiu Hong Hao ◽  
Ai Qin Zhang ◽  
Zhi Guo Liu

The performance of asphalt concrete mixed with 3 types of fine aggregate respectively (i.e. natural sand, limestone, basalt) are compared. The results of Marshall test and rutting test show that the high temperature performance of asphalt mixture mixed with basalt is the best, that of asphalt mixture mixed with natural sand is the worst, and that of asphalt mixture mixed with limestone is between the above two. The result of immersion Marshall test show that the water stability of asphalt mixture mixed with basalt and that of asphalt mixture mixed with limestone are similar, but better than that of asphalt mixture mixed with natural sand. Therefore, it indicates that the machine-made aggregate (of basalt or limestone) have better pavement performance and environment benefit than the natural sand.


Alloy Digest ◽  
1995 ◽  
Vol 44 (3) ◽  

Abstract NICROFER 5520 Co is a nickel-chromium-cobalt-molybdenum alloy with excellent strength and creep properties up to high temperatures. Due to its balanced chemical composition the alloy shows outstanding resistance to high temperature corrosion in the form of oxidation and carburization. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-480. Producer or source: VDM Technologies Corporation.


Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Kubota KNC-03 is a grade with a combination of high strength and excellent resistance to oxidation. These properties make this alloy suitable for long-term service at temperature up to 1250 deg C (2282 deg F). This datasheet provides information on physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: Ni-676. Producer or source: Kubota Metal Corporation, Fahramet Division. See also Alloy Digest Ni-662, April 2008.


Alloy Digest ◽  
2020 ◽  
Vol 69 (8) ◽  

Abstract ATI 6-2-4-2 is a near-alpha, high strength, titanium alloy that exhibits a good combination of tensile strength, creep strength, toughness, and long-term stability at temperatures up to 425 °C (800 °F). Silicon up to 0.1% frequently is added to improve the creep resistance of the alloy. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ti-169. Producer or Source: ATI.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jinrong Wu ◽  
Rongbao Hong ◽  
Chenbin Gu

In order to improve the durability of asphalt pavement, low-temperature fracture performance of AC-13 asphalt mixture with different fiber types were studied by three-point bending fracture test under different temperatures and presawed positions. Test results show that the improvement effect of basalt fiber is obvious and stable. The improvement effect of polyester fiber is not obvious to resist I crack, and the resistance effect of I-II compound crack is obvious. Lignin fiber mixed in the asphalt mixture has no obvious effect on improving the crack resistance property under low temperature. Fiber cooperated with asphalt mixture can improve the ability of low-temperature fracture performance, while the improvement degree is effected by fiber type. Low-temperature fracture performance of asphalt mixture improves with the increase of temperature within a certain temperature range. The presawed position has significant effect on the low-temperature fracture performance of asphalt mixture. The larger the horizontal distance of the presawed position and center load is, the stronger the low-temperature fracture performance of asphalt mixture presents.


Sign in / Sign up

Export Citation Format

Share Document