scholarly journals Influence of Intermittent Parathyroid Hormone (PTH) Administration on the Outcomes of Orthodontic Tooth Movement—A Systematic Review

2021 ◽  
Vol 11 (11) ◽  
pp. 5268
Author(s):  
Zohaib Khurshid ◽  
Faris Yahya Asiri

Objective: The aim of this review is to summarize the effects of local and systemic PTH administration on periodontal tissues during orthodontic tooth movement. Materials and methods: An electronic search was conducted on the following databases: PubMed/MEDLINE, Google Scholar, SCOPUS and Embase. On PubMed/MEDLINE, the Medical Subject Headings (MeSH) keywords used were: “orthodontic tooth movement” OR (“tooth” (All Fields) AND “tooth movement” (All Fields)) OR “tooth movement” (All Fields)) AND (“parathyroid hormone”); all studies included using CONSORT. Results: After elimination of duplicates and articles not meeting our inclusion criteria, seven animal studies were included in this review. Although the majority of the studies suggest that PTH may a have a favorable outcome on OTM, most studies were found to have several sources of bias. Conclusion: Animal studies with minimal bias and long-term clinical studies are needed to ascertain the efficacy of intermittent PTH administration in improving the rate and retention of OTM.

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257778
Author(s):  
Eleftherios G. Kaklamanos ◽  
Miltiadis A. Makrygiannakis ◽  
Athanasios E. Athanasiou

Background The long-term use of contraceptive methods that contain estrogens, progestogens or combinations of the above among women aged 15 to 49 years is extensive. Both estrogens and progestogens affect bone metabolism. Objective To systematically investigate and appraise the quality of the available evidence from animal studies regarding the impact of exogenous administration of female sex hormones on the rate of orthodontic tooth movement and root resorption. Search methods Search without restriction in seven databases (including grey literature) and hand searching were performed until May 2021. Selection criteria We looked for controlled animal studies investigating the effect from exogenous administration of formulations containing female sex hormones on the rate of orthodontic tooth movement and root resorption. Data collection and analysis After study retrieval and selection, relevant data was extracted, and the risk of bias was assessed using the SYRCLE’s Risk of Bias Tool. The quality of available evidence was assessed with the Grades of Recommendation, Assessment, Development, and Evaluation. Results Three studies were identified, all being at unclear risk of bias. Overall, administration of progesterone and the combinations of estradiol with norgestrel and desogestrel were shown to significantly decrease the rate of orthodontic tooth movement when given for longer periods (>3 weeks). Inconsistent information was detected for shorter periods of consumption. Estradiol, with desogestrel use, resulted in less root resorption. The quality of the available evidence was considered to be low. Conclusions Exogenous administration of female sex hormones may decelerate in the long term the rate of tooth movement and decrease orthodontically induced root resorption in animals. Until more information becomes available, an orthodontist should be able to identify a patient consuming such substances and understand the potential clinical implications and adverse effects that may arise. Registration PROSPERO: CRD42017078208; https://clinicaltrials.gov/.


2018 ◽  
Vol 41 (5) ◽  
pp. 468-477 ◽  
Author(s):  
Miltiadis A Makrygiannakis ◽  
Eleftherios G Kaklamanos ◽  
Athanasios E Athanasiou

Summary Background Pain relief drugs are used and misused widely and may theoretically affect the events leading to orthodontic tooth movement. Objective To systematically investigate and appraise the quality of the available evidence regarding the effect of pain relief medications on the rate of orthodontic tooth movement. Search methods Search without restrictions in eight databases (including grey literature) and hand searching until October 2018. Selection criteria Animal controlled studies investigating the effect of pain relievers on the rate of orthodontic tooth movement. Data collection and analysis Following study retrieval and selection, relevant data were extracted and the risk of bias was assessed using the SYRCLE’s risk of bias tool. Results Fourteen studies were finally identified, most of which at unclear risk of bias. Ibuprofen and loxoprofen did not show any significant effects on the rate of orthodontic tooth movement, whereas indomethacin, ketorolac, morphine, and high doses of etoricoxib were found to decrease it. Inconsistent or conflicting effects were noted after the administration of acetaminophen, acetylsalicylic acid, celecoxib, meloxicam, and tramadol. The quality of the available evidence was considered at best as low. Conclusions Long-term consumption of pain relievers may affect the rate of orthodontic tooth movement. The orthodontist should be capable of identifying patients taking pain relievers independently of orthodontic treatment and consider the possible implications. Trial registration PROSPERO (CRD42017078208).


2021 ◽  
pp. 030157422110195
Author(s):  
Ashish Agrawal ◽  
TM Chou

Introduction: The objective of this systematic review is to assess the effect of vibrational force on biomarkers for orthodontic tooth movement. Methods: An electronic search was conducted for relevant studies (up to December 31, 2020) on the following databases: Pubmed, Google scholar, Web of Science, Cochrane Library, Wiley Library, and ProQuest Dissertation Abstracts and Thesis database. Hand searching of selected orthodontic journals was also undertaken. The selected studies were assessed for the risk of bias in Cochrane collaboration risk of bias tool. The “traffic plot” and “weighted plot” risk of bias distribution are designed in the RoB 2 tool. The 2 authors extracted the data and analyzed it. Results: Six studies fulfilled the inclusion criteria. The risks of biases were high for 4, low and some concern for other 2 studies. The biomarkers, medium, device, frequency and duration of device, as well as other data were extracted. The outcomes of the studies were found to be heterogenous. Conclusion: One study showed highly statistically significant levels of IL-1 beta with <.001. Rate of tooth movement was correlated with levels of released biomarkers under the influence of vibrational force in 3 studies, but it was found to be significant only in 1 study. It was further observed that vibration does not have any significant reduction in pain and discomfort.


2021 ◽  
pp. 002203452110199
Author(s):  
Y. Xie ◽  
Q. Tang ◽  
S. Yu ◽  
W. Zheng ◽  
G. Chen ◽  
...  

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs) sensing biomechanical stimuli and subsequently releasing signals to initiate alveolar bone remodeling. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities are still unclear. This study demonstrates that the core circadian protein aryl hydrocarbon receptor nuclear translocator–like protein 1 (BMAL1) in PDLCs is highly involved in sensing and delivering biomechanical signals. Orthodontic force upregulates BMAL1 expression in periodontal tissues and cultured PDLCs in manners dependent on ERK (extracellular signal–regulated kinase) and AP1 (activator protein 1). Increased BMAL1 expression can enhance secretion of CCL2 (C-C motif chemokine 2) and RANKL (receptor activator of nuclear factor–κB ligand) in PDLCs, which subsequently promotes the recruitment of monocytes that differentiate into osteoclasts. The mechanistic delineation clarifies that AP1 induced by orthodontic force can directly interact with the BMAL1 promoter and activate gene transcription in PDLCs. Localized administration of the ERK phosphorylation inhibitor U0126 or the BMAL1 inhibitor GSK4112 suppressed ERK/AP1/BMAL1 signaling. These treatments dramatically reduced osteoclastic activity in the compression side of a rat orthodontic model, and the OTM rate was almost nonexistent. In summary, our results suggest that force-induced expression of BMAL1 in PDLCs is closely involved in controlling osteoclastic activities during OTM and plays a vital role in alveolar bone remodeling. It could be a useful therapeutic target for accelerating the OTM rate and controlling pathologic bone-remodeling activities.


2021 ◽  
Vol 11 (2) ◽  
pp. 521
Author(s):  
Simina Chelărescu ◽  
Petra Șurlin ◽  
Mioara Decusară ◽  
Mădălina Oprică ◽  
Eugen Bud ◽  
...  

Background: The crevicular fluid analysis represents a useful diagnosis tool, with the help of which noninvasive cellular metabolic activity can be analyzed. The aim of the study is to investigate comparatively IL1β and IL6 in the gingival crevicular fluid of clinically healthy adolescents and young adults during the acute phase of orthodontic treatment. Methods: Gingival crevicular fluid was collected from 20 patients (aged between 11 and 28) undergoing orthodontic treatment. Measurements were taken before (T0) and after 24 h after distalization forces were activated (T1). IL1β and IL 6 were analyzed using Elisa tests. The statistical tests used were two-sided t tests. Results: Between the two time periods there was a significant raise both in the crevicular fluid rate (0.57 µL at T0 vs. 0.95 µL at T1, p = 0.001) and in IL1β levels (15.67 pg/µL at T0 vs. 27.94 pg/µL at T1, p = 0.009). We were able to identify IL6 only in a third of the sites. There is a significantly increased level of ILβ at T1 in adolescents, more than in young adults (42.96 pg/µL vs. 17.93 pg/µL, p = 0.006). Conclusions: In the early stage of orthodontic treatment, the periodontal tissues of adolescents are more responsive to orthodontic forces than those of young adults.


2009 ◽  
Vol 88 (8) ◽  
pp. 752-756 ◽  
Author(s):  
A. Miyagawa ◽  
M. Chiba ◽  
H. Hayashi ◽  
K. Igarashi

During orthodontic tooth movement, the activation of the vascular system in the compressed periodontal ligament (PDL) is an indispensable process in tissue remodeling. We hypothesized that compressive force would induce angiogenesis of PDL through the production of vascular endothelial growth factor (VEGF). We examined the localization of VEGF in rat periodontal tissues during experimental tooth movement in vivo, and the effects of continuous compressive force on VEGF production and angiogenic activity in human PDL cells in vitro. PDL cells adjacent to hyalinized tissue and alveolar bone on the compressive side showed marked VEGF immunoreactivity. VEGF mRNA expression and production in PDL cells increased, and conditioned medium stimulated tube formation. These results indicate that continuous compressive force enhances VEGF production and angiogenic activity in PDL cells, which may contribute to periodontal remodeling, including angiogenesis, during orthodontic tooth movement.


2009 ◽  
Vol 79 (6) ◽  
pp. 1126-1132 ◽  
Author(s):  
Xiulin Yan ◽  
Jiang Chen ◽  
Yuquan Hao ◽  
Yan Wang ◽  
Li Zhu

Abstract Objective: To investigate the changes of caspase-1 in orthodontic tooth movement and to determine whether the changes are phase-specific. Materials and Methods: Eighty Wistar rats were included in this study. Sentalloy closed-coil springs were placed to induce a mesial traction force on the lower right first molar. The animals were killed after 1, 3, 7, and 14 days (n = 20 at each time point). The mandibles of 10 rats were sampled for histomorphometric analysis and immunohistochemical assay, and the periodontal tissues of 10 other rats were sampled for detecting caspase-1 mRNA and protein by real-time RT-PCR and by Western blotting, respectively. Results: The inflammatory reaction was evident in paraffin sections with hematoxylin-eosin staining. The immunohistochemical assay showed that orthodontic forces significantly increased the number of caspase-1-positive cells in the periodontal ligament (PDL). Mechanical force triggered an increase of caspase-1 mRNA in periodontal tissues. The expression of caspase-1 mRNA increased from day 1, reached the peak on day 3, and then decreased. The results of Western blotting indicated that the levels of both procaspase-1 and P20 subunit significantly increased after the application of orthodontic forces, compared with those in controls (P &lt; .05). Conclusion: Caspase-1 level increases during orthodontic tooth movement and changes with different phases, which might play a significant role in orthodontic tooth movement.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Noura Saeed Sultan Almidfa ◽  
Athanasios E. Athanasiou ◽  
Miltiadis A. Makrygiannakis ◽  
Eleftherios G. Kaklamanos

Abstract Background As the fluctuation of sex hormone levels in menstruating women results in periodical effects in bone metabolism, understanding the implications for tooth movement could be of benefit to the orthodontist. This type of research presents practical and ethical problems in humans, but animal models could provide useful information. Our objective was to systematically investigate the available evidence on the question whether the rate of orthodontic tooth movement varies between the different stages of the estrus cycle in animals. Methods Unrestricted searches in 7 databases and manual searching of the reference lists in relevant studies were performed up to February 2021 (Medline [PubMed], CENTRAL [Cochrane Library; includes records from Embase, CINAHL, ClinicalTrials.gov, WHO's ICTRP, KoreaMed, Cochrane Review Groups’ Specialized Registers, and records identified by handsearching], Cochrane Database of Systematic Reviews [Cochrane Library], Scopus, Web of Knowledge [including Web of Science Core Collection, KCI Korean Journal Database, Russian Science Citation Index, SciELO Citation Index and Zoological Record], Arab World Research Source [EBSCO] and ProQuest Dissertation and Theses [ProQuest]). Our search focused on prospective controlled animal studies, whose samples included female subjects of any species that were quantitatively comparing the amount of tooth movement in the different stages of the estrus cycle. Following study retrieval and selection, relevant data was extracted, and the risk of bias was assessed using the SYRCLE’s Risk of Bias Tool. Results From the finally assessed records, 3 studies met the inclusion criteria. Two of the studies experimented on Wistar rats, whereas the other on cats. Tooth movement was induced by expansion or coil springs. The rate of orthodontic tooth movement was increased during the stages of the estrus cycle when oestrogen and/or progesterone levels were lower. The risk of bias in the retrieved studies was assessed to be unclear. Conclusion Hormonal changes during the estrus cycle may affect the rate of orthodontic tooth movement. Although these animal experiment results should be approached cautiously regarding their translational potential, it could be useful to consider the possible impact of these physiological changes in the clinical setting until more information becomes available. Registration: PROSPERO (CRD42021158069).


Sign in / Sign up

Export Citation Format

Share Document