scholarly journals Recent Updates on the Synthesis of Bioactive Quinoxaline-Containing Sulfonamides

2021 ◽  
Vol 11 (12) ◽  
pp. 5702
Author(s):  
Ali Irfan ◽  
Sajjad Ahmad ◽  
Saddam Hussain ◽  
Fozia Batool ◽  
Haseeba Riaz ◽  
...  

Quinoxaline is a privileged pharmacophore that has broad-spectrum applications in the fields of medicine, pharmacology and pharmaceutics. Similarly, the sulfonamide moiety is of considerable interest in medicinal chemistry, as it exhibits a wide range of pharmacological activities. Therefore, the therapeutic potential and biomedical applications of quinoxalines have been enhanced by incorporation of the sulfonamide group into their chemical framework. The present review surveyed the literature on the preparation, biological activities and structure-activity relationship (SAR) of quinoxaline sulfonamide derivatives due to their broad range of biomedical activities, such as diuretic, antibacterial, antifungal, neuropharmacological, antileishmanial, anti-inflammatory, anti-tumor and anticancer action. The current biological diagnostic findings in this literature review suggest that quinoxaline-linked sulfonamide hybrids are capable of being established as lead compounds; modifications on quinoxaline sulfonamide derivatives may give rise to advanced therapeutic agents against a wide variety of diseases.

2020 ◽  
Vol 26 (1) ◽  
pp. 46-59 ◽  
Author(s):  
Ali Irfan ◽  
Laila Rubab ◽  
Mishbah Ur Rehman ◽  
Rukhsana Anjum ◽  
Sami Ullah ◽  
...  

AbstractCoumarin sulfonamide is a heterocyclic pharmacophore and an important structural motif which is a core and integral part of different therapeutic scaffolds and analogues. Coumarin sulfonamides are privileged and pivotal templates which have a broad spectrum of applications in the fields of medicine, pharmacology and pharmaceutics. Coumarin sulfonamide exhibited versatile and myriad biomedical activities such as anti-bacterial, antiviral, antifungal, anti-inflammatory and anti-cancer. This review article focuses on the structural features of coumarin sulfonamide derivatives in the treatment of different lethal diseases on the basis of structure-activity relationships (SAR). The plethora of research cited in this review article summarizes and discusses the various substitutions around the coumarin sulfonamide nucleus which have provided a wide spectrum of biological activities and therapeutic potential that has proved attractive to many researchers looking to exploit the coumarin sulfonamide skeleton for drug discovery and the development of novel therapeutic agents.


2020 ◽  
Vol 26 (1) ◽  
pp. 138-159 ◽  
Author(s):  
Yanfei Ban ◽  
Tianshuang Xia ◽  
Rui Jing ◽  
Yaoli Guo ◽  
Yiya Geng ◽  
...  

Plants of the genus Vitex (Verbenaceae) are mainly distributed throughout tropical and temperate regions, and many Vitex plants have been traditionally used in folk medicine. Plants of this genus are a rich source of diterpenoids, which not only displayed versatile structural diversity with potential chemotaxonomical significance but also exhibited a wide range of biological activities, mainly including in vitro cytotoxic, antiinflammatory, antimicrobial, hormone level-regulating and antiangiogenic activities. Recently, a series of bioactive diterpenoids, with interesting carbon skeletons, have been reported and gathered considerable interest. This article systematically reviewed diterpenoids isolated from the genus Vitex that appeared in the literature up to December 2018, critically highlighting their structural diversity and pharmacological activities. Up to now, a total of 154 diterpenoids with diverse structures have been isolated and identified from Vitex plants. The authors also summarized the reported structure-activity relationships of those well explored Vitex diterpenoids. Finally, the authors discussed the challenges and potential applications of these diterpenoids in the future.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 791 ◽  
Author(s):  
Carla Fernandes ◽  
Maria Carraro ◽  
João Ribeiro ◽  
Joana Araújo ◽  
Maria Tiritan ◽  
...  

Many naturally occurring xanthones are chiral and present a wide range of biological and pharmacological activities. Some of them have been exhaustively studied and subsequently, obtained by synthesis. In order to obtain libraries of compounds for structure activity relationship (SAR) studies as well as to improve the biological activity, new bioactive analogues and derivatives inspired in natural prototypes were synthetized. Bioactive natural xanthones compromise a large structural multiplicity of compounds, including a diversity of chiral derivatives. Thus, recently an exponential interest in synthetic chiral derivatives of xanthones (CDXs) has been witnessed. The synthetic methodologies can afford structures that otherwise could not be reached within the natural products for biological activity and SAR studies. Another reason that justifies this trend is that both enantiomers can be obtained by using appropriate synthetic pathways, allowing the possibility to perform enantioselectivity studies. In this work, a literature review of synthetic CDXs is presented. The structures, the approaches used for their synthesis and the biological activities are described, emphasizing the enantioselectivity studies.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Huang ◽  
Gen Li ◽  
Chong Hong ◽  
Xia Zheng ◽  
Haiyang Yu ◽  
...  

Steroidal alkaloids contain both steroidal and alkaloid properties in terms of chemical properties and pharmacological activities. Due to outstanding biological activities such as alkaloids and similar pharmacological effects to other steroids, steroidal alkaloids have received special attention in anticancer activity recently. Substituted groups in chemical structure play markedly important roles in biological activities. Therefore, the effective way to obtain lead compounds quickly is structural modification, which is guided by structure–activity relationships (SARs). This review presents the SAR of steroidal alkaloids and anticancer, including pregnane alkaloids, cyclopregnane alkaloids, cholestane alkaloids, C-nor-D-homosteroidal alkaloids, and bis-steroidal pyrazine. A summary of SAR can powerfully help to design and synthesize more lead compounds.


2021 ◽  
Vol 14 (6) ◽  
pp. 546
Author(s):  
Patrícia I. C. Godinho ◽  
Raquel G. Soengas ◽  
Vera L. M. Silva

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread all over the world, creating a devastating socio-economic impact. Even though protective vaccines are starting to be administered, an effective antiviral agent for the prevention and treatment of COVID-19 is not available yet. Moreover, since new and deadly CoVs can emerge at any time with the potential of becoming pandemics, the development of therapeutic agents against potentially deadly CoVs is a research area of much current interest. In the search for anti-coronaviral drugs, researchers soon turned their heads towards glycosylated flavonoids. Glycosyl flavonoids, widespread in the plant kingdom, have received a lot of attention due to their widely recognized antioxidant, anti-inflammatory, neuroprotective, anticarcinogenic, antidiabetic, antimicrobial, and antiviral properties together with their capacity to modulate key cellular functions. The wide range of biological activities displayed by glycosyl flavonoids, along with their low toxicity, make them ideal candidates for drug development. In this review, we examine and discuss the up-to-date developments on glycosyl flavonoids as evidence-based natural sources of antivirals against coronaviruses and their potential role in the management of COVID-19.


2021 ◽  
Vol 11 (12) ◽  
pp. 5742
Author(s):  
Ali Irfan ◽  
Sami Ullah ◽  
Ayesha Anum ◽  
Nazish Jabeen ◽  
Ameer Fawad Zahoor ◽  
...  

The 1,2,3-thiadiazole moiety occupies a significant and prominent position among privileged heterocyclic templates in the field of medicine, pharmacology and pharmaceutics due to its broad spectrum of biological activities. The 1,2,3-thiadiazole hybrid structures showed myriad biomedical activities such as antifungal, antiviral, insecticidal, antiamoebic, anticancer and plant activators, etc. In the present review, various synthetic transformations and approaches are highlighted to furnish 1,2,3-thiadiazole scaffolds along with different pharmaceutical and pharmacological activities by virtue of the presence of the 1,2,3-thiadiazole framework on the basis of structure–activity relationship (SAR). The discussion in this review article will attract the attention of synthetic and medicinal researchers to explore 1,2,3-thiadiazole structural motifs for future therapeutic agents.


2019 ◽  
Vol 25 (11) ◽  
pp. 1147-1162 ◽  
Author(s):  
Ida Idayu Muhamad ◽  
Nabilah Zulkifli ◽  
Suguna a/p Selvakumaran ◽  
Nurul Asmak Md Lazim

Background: In recent decades, there has been an increased interest in the utilization of polysaccharides showing biological activity for various novel applications owing to their biocompatibility, biodegradability, non-toxicity, and some specific therapeutic activities. Increasing studies have started in the past few years to develop algal polysaccharides-based biomaterials for various applications. Methods: Saccharide mapping or enzymatic profiling plays a role in quality control of polysaccharides. Whereby, in vitro and in vivo tests as well as toxicity level discriminating polysaccharides biological activities. Extraction and purification methods are performed in obtaining algal derived polysaccharides followed by chromatographic profiles of their active compounds, structural features, physicochemical properties, and reported biological activities. Results: Marine algae are capable of synthesizing Glycosaminoglycans (GAGs) and non-GAGs or GAG mimetics such as sulfated glycans. The cell walls of algae are rich in sulfated polysaccharides, including alginate, carrageenan, ulvan and fucoidan. These biopolymers are widely used algal-derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. They constitute biochemical compounds that have multi-functionalization, therapeutic potential and immunomodulatory abilities, making them promising bioactive products and biomaterials with a wide range of biomedical applications. Conclusion: Algal-derived polysaccharides with clearly elucidated compositions/structures, identified cellular activities, as well as desirable physical properties have shown the potential that may create new opportunities. They could be maximally exploited to serve as therapeutic tools such as immunoregulatory agents or drug delivery vehicles. Hence, novel strategies could be applied to tailor multi-functionalization of the polysaccharides from algal species with vast biomedical application potentials.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 181 ◽  
Author(s):  
Ari Satia Nugraha ◽  
Bawon Triatmoko ◽  
Phurpa Wangchuk ◽  
Paul A. Keller

This is an extensive review on epiphytic plants that have been used traditionally as medicines. It provides information on 185 epiphytes and their traditional medicinal uses, regions where Indigenous people use the plants, parts of the plants used as medicines and their preparation, and their reported phytochemical properties and pharmacological properties aligned with their traditional uses. These epiphytic medicinal plants are able to produce a range of secondary metabolites, including alkaloids, and a total of 842 phytochemicals have been identified to date. As many as 71 epiphytic medicinal plants were studied for their biological activities, showing promising pharmacological activities, including as anti-inflammatory, antimicrobial, and anticancer agents. There are several species that were not investigated for their activities and are worthy of exploration. These epipythes have the potential to furnish drug lead compounds, especially for treating cancers, and thus warrant indepth investigations.


Author(s):  
SAGMA EG ◽  
BASKAR LAKSHMANAN

Pyrimidine nucleus exhibited remarkable pharmacological activities. The review of an article indicates that the compounds having pyrimidine nucleus have a wide range of therapeutic uses that include antiviral, anti-inflammatory, antibacterial, anticancer, antiviral, anti-HIV, antihypertensive, sedatives and hypnotics, anticonvulsant, and antihistaminic. This review article is intended to describe the antiviral activity of a compound containing the pyrimidine nucleus. The chemistry of pyrimidine is a thriving field for the study of their pharmacological uses. Numerous methods for the synthesis of pyrimidine as also their diverse reactions offer enormous scope in the field of medicinal chemistry. The review article aims to reveal the work reported on the antiviral synthetic pyrimidine compound and the chemistry and biological activities of pyrimidine during the past few decades. During this review article, we are mainly focusing the viral activities in different derivatives of pyrimidine nucleus. Therefore, we are going to discuss some important issues such as the good ideas to resist our increasing viral disease and the importance of a pyrimidine nucleus in the viral drugs. Hence, these are the main things we are going to discuss in this article.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junjun Long ◽  
Wentao Ji ◽  
Doudou Zhang ◽  
Yifei Zhu ◽  
Yi Bi

Fusidic acid (FA) is a natural tetracyclic triterpene isolated from fungi, which is clinically used for systemic and local staphylococcal infections, including methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci infections. FA and its derivatives have been shown to possess a wide range of pharmacological activities, including antibacterial, antimalarial, antituberculosis, anticancer, tumor multidrug resistance reversal, anti-inflammation, antifungal, and antiviral activity in vivo and in vitro. The semisynthesis, structural modification and biological activities of FA derivatives have been extensively studied in recent years. This review summarized the biological activities and structure–activity relationship (SAR) of FA in the last two decades. This summary can prove useful information for drug exploration of FA derivatives.


Sign in / Sign up

Export Citation Format

Share Document